• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Anderson, D., and Coauthors, 2007: Development of the ECMWF seasonal forecast System 3. ECMWF Tech. Memo. 503, 56 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/501-600/tm503.pdf.]

  • Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , F. J. Doblas-Reyes, , T. N. Palmer, , G. Shutts, , and A. Weisheimer, 2008: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philos. Trans. Roy. Soc., A366, 25592577.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , G. Shutts, , M. Leutbecher, , and T. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , S.-Y. Ha, , J. P. Hacker, , A. Fournier, , and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., , A. Arribas, , S. E. Beare, , K. R. Mylne, , and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776.

    • Search Google Scholar
    • Export Citation
  • Branković, C., , C. Jakob, , M. Miller, , A. Untch, , and N. Wedi, 2002: Climate diagnostics of the ECMWF AMIP-2 simulations. ECMWF Tech. Memo. 360, 38 pp. [Available online at at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/301-400/tm360.pdf.]

  • Charron, M., , G. Pellerin, , L. Spacek, , P. L. Houtekamer, , N. Gagnon, , H. L. Mitchell, , and L. Michelin, 2010: Toward random sampling of model error in the Canadian Ensemble Prediction System. Mon. Wea. Rev., 138, 18771901.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., and Coauthors, 2009: Addressing model uncertainty in seasonal and annual dynamical seasonal forecasts. Quart. J. Roy. Meteor. Soc., 135, 15381559.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., , and E. J. Pitcher, 1972: Stochastic analysis of meteorological fields. J. Atmos. Sci., 29, 244257.

  • Ferranti, L., , T. N. Palmer, , F. Molteni, , and F. M. E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60-day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199.

    • Search Google Scholar
    • Export Citation
  • Fournier, A., 2003: Atmospheric energetics in the wavelet domain. Part II: Time-averaged observed atmospheric blocking. J. Atmos. Sci., 60, 319338.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955.

    • Search Google Scholar
    • Export Citation
  • Hannay, C., , D. Williamson, , J. J. Hack, , J. T. Kiehl, , J. G. Olson, , S. A. Klein, , C. S. Bretherton, , and M. Köhler, 2009: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate, 22, 28712889.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363.

    • Search Google Scholar
    • Export Citation
  • Iacono, M., , J. Delamere, , E. Mlawer, , M. Shephard, , S. Clough, , and W. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jung, T., 2005: Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc., 131, 10451073.

    • Search Google Scholar
    • Export Citation
  • Jung, T., , and A. M. Tompkins, 2003: Systematic errors in the ECMWF forecasting system. ECMWF Tech. Memo. 422, 72 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/401-500/tm422.pdf.]

  • Jung, T., , T. N. Palmer, , and G. J. Shutts, 2005: Influence of a stochastic parameterization on the frequency of occurrence of North Pacific weather regimes in the ECMWF model. Geophys. Res. Lett., 32, L23811, doi:10.1029/2005GL024248.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., , and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 26252644.

    • Search Google Scholar
    • Export Citation
  • Klinker, E., , and P. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, 608627.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: Climate predictability. The Physical Basis of Climate and Climate Modelling, GARP Publ. Series 16, 132136.

  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 5, 702708.

    • Search Google Scholar
    • Export Citation
  • Mason, P., , and D. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 5178.

  • Morcrette, J.-J., , H. W. Barker, , J. N. S. Cole, , M. J. Iacono, , and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 47734798.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction. Quart. J. Roy. Meteor. Soc., 127, 279304.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , and A. Weisheimer, 2011: Diagnosing the causes of bias in climate models—Why is it so hard? Geophys. Astrophys. Fluid Dyn., 105, 351365.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , H. Barker, , and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds. J. Geophys. Res., 108D, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pitcher, E. J., 1977: Application of stochastic dynamic prediction to real data. J. Atmos. Sci., 34, 321.

  • Randall, D. A., , M. Khairoutdinov, , A. Arakawa, , and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M., , and T. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., , and M. E. B. Gray, 1994: A numerical modelling study of the geostrophic adjustment following deep convection. Quart. J. Roy. Meteor. Soc., 120, 11451178.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., , and T. N. Palmer, 2003: The use of high resolution numerical simulations of tropical circulation to calibrate stochastic physics schemes. Proc. ECMWF/CLIVAR Workshop on Simulation and Prediction of Intra-Seasonal Variability with Emphasis on the MJO, Reading, United Kingdom, ECMWF, 83–102.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stainforth, D., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406.

    • Search Google Scholar
    • Export Citation
  • Steinheimer, M., , M. Hantel, , and P. Bechtold, 2007: Convection in Lorenz’s global energy cycle with the ECMWF model. ECMWF Tech. Memo. 545, 37 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/501-600/tm545_rev.pdf.]

  • Tennant, W. J., , G. J. Shutts, , and S. A. T. A. Arribas, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 11901206.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132, 27612779.

  • Vitart, F., , and T. Jung, 2010: Impact of the northern extratropical circulation on the skill in predicting the Madden–Julian oscillation. Geophys. Res. Lett., 37, L23085, doi:10.1029/2010GL045465.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , M. A. Balmaseda, , L. Ferranti, , and D. Anderson, 2003: Westerly wind events and the 1997/98 El Niño event in the ECMWF seasonal forecasting system: A case study. J. Climate, 16, 31533170.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., , T. N. Palmer, , and F. J. Doblas-Reyes, 2011: Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys. Res. Lett., 38, L16703, doi:10.1029/2011GL048123.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 16
PDF Downloads 63 63 15

Systematic Model Error: The Impact of Increased Horizontal Resolution versus Improved Stochastic and Deterministic Parameterizations

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany
  • | 3 ECMWF, Shinfield Park, Reading, and Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
© Get Permissions
Restricted access

Abstract

Long-standing systematic model errors in both tropics and extratropics of the ECMWF model run at a horizontal resolution typical for climate models are investigated. Based on the hypothesis that the misrepresentation of unresolved scales contributes to the systematic model error, three model refinements aimed at their representation—fluctuating or deterministically—are investigated.

Increasing horizontal resolution to explicitly simulate smaller-scale features, representing subgrid-scale fluctuations by a stochastic parameterization, and improving the deterministic physics parameterizations all lead to a decrease in the systematic bias of the Northern Hemispheric circulation. These refinements reduce the overly zonal flow and improve the model’s ability to capture the frequency of blocking. However, the model refinements differ greatly in their impact in the tropics. While improving the deterministic and introducing stochastic parameterizations reduces the systematic precipitation bias and improves the characteristics of convectively coupled waves and tropical variability in general, increasing horizontal resolution has little impact.

The fact that different model refinements can lead to reductions in systematic model error is consistent with the hypothesis that unresolved scales play an important role. At the same time, this degeneracy of the response to different forcings can lead to compensating model errors. Hence, if one takes the view that stochastic parameterization should be an important element of next-generation climate models, if only to provide reliable estimates of model uncertainty, then a fundamental conclusion of this study is that stochasticity should be incorporated within the design of physical process parameterizations and improvements of the dynamical core and not added a posteriori.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Judith Berner, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: berner@ucar.edu

Abstract

Long-standing systematic model errors in both tropics and extratropics of the ECMWF model run at a horizontal resolution typical for climate models are investigated. Based on the hypothesis that the misrepresentation of unresolved scales contributes to the systematic model error, three model refinements aimed at their representation—fluctuating or deterministically—are investigated.

Increasing horizontal resolution to explicitly simulate smaller-scale features, representing subgrid-scale fluctuations by a stochastic parameterization, and improving the deterministic physics parameterizations all lead to a decrease in the systematic bias of the Northern Hemispheric circulation. These refinements reduce the overly zonal flow and improve the model’s ability to capture the frequency of blocking. However, the model refinements differ greatly in their impact in the tropics. While improving the deterministic and introducing stochastic parameterizations reduces the systematic precipitation bias and improves the characteristics of convectively coupled waves and tropical variability in general, increasing horizontal resolution has little impact.

The fact that different model refinements can lead to reductions in systematic model error is consistent with the hypothesis that unresolved scales play an important role. At the same time, this degeneracy of the response to different forcings can lead to compensating model errors. Hence, if one takes the view that stochastic parameterization should be an important element of next-generation climate models, if only to provide reliable estimates of model uncertainty, then a fundamental conclusion of this study is that stochasticity should be incorporated within the design of physical process parameterizations and improvements of the dynamical core and not added a posteriori.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Judith Berner, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: berner@ucar.edu
Save