• An, S.-I., , and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412.

  • An, S.-I., , Y.-G. Ham, , J.-S. Kug, , F.-F. Jin, , and I.-S. Kang, 2005: El Niño–La Niña asymmetry in the Coupled Model Intercomparison Project simulations. J. Climate, 18, 26172627.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , J.-S. Kug, , Y.-G. Ham, , and I.-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21, 321.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., , S. K. Behera, , S. A. Rao, , H. Weng, , and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Batstone, C., , and H. H. Hendon, 2005: Characteristics of stochastic variability associated with ENSO and the role of the MJO. J. Climate, 18, 17731789.

    • Search Google Scholar
    • Export Citation
  • Blaauboer, D., , G. J. Komen, , and J. Reiff, 1982: The behaviour of the sea surface temperature (SST) as a response to stochastic latent- and sensible heat forcing. Tellus, 34, 1728.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.

  • Burgers, G., , and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030.

  • Clarke, A. J., 1994: Why are surface equatorial ENSO winds anomalously westerly under anomalous large-scale convection? J. Climate, 7, 16231627.

    • Search Google Scholar
    • Export Citation
  • Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022.

  • Eisenman, I., , L. Yu, , and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238.

  • Fink, A., , and P. Speth, 1997: Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25-70-day) variability. Int. J. Climatol., 17, 15131534.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., , I. Eisenman, , A. Wittenberg, , and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295.

    • Search Google Scholar
    • Export Citation
  • Gushchina, D., , and B. Dewitte, 2011: The relationship between intraseasonal tropical variability and ENSO and its modulation at seasonal to decadal timescales. Cent. Eur. J. Geosci., 3, 175196, doi:10.2478/s13533-011-0017-3.

    • Search Google Scholar
    • Export Citation
  • Han, W., , P. Webster, , R. Lukas, , P. Hacker, , and A. Hu, 2004: Impact of atmospheric intraseasonal variability in the Indian Ocean: Low-frequency rectification in equatorial surface current and transport. J. Phys. Oceanogr., 34, 13501372.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., , D. Stephenson, , and K. Sperber, 2003: Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn., 20, 241256.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., , and P. S. Schopf, 1984: Kelvin-wave-induced anomalous advection and the onset of surface warming in El Niño events. Mon. Wea. Rev., 112, 923933.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., , and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156.

  • Hendon, H. H., , and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , M. C. Wheeler, , and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543.

  • Holland, G., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 5779.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Holtslag, A. A. M., , and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , M. M. Morrissey, , D. T. Bolvin, , S. Curtis, , R. Joyce, , B. McGavock, , and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , S.-I. An, , A. Timmermann, , and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , L. Lin, , A. Timmermann, , and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, doi:10.1029/2006GL027372.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kao, H.-Y., , and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632.

  • Kessler, W. S., , and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., , M. J. McPhaden, , and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100 (C6), 10 61310 631.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , J.-S. Kug, , I.-S. Kang, , F.-F. Jin, , and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31, 213226.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Kirtman, B. P., , K. Pegion, , and S. Kinter, 2005: Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J. Atmos. Sci., 62, 22202233.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B, , and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , and Y.-G. Ham, 2011: Are there two types of La Nina events? Geophys. Res. Lett., 38, L16704, doi:10.1029/2011GL048237.

  • Kug, J.-S., , F.-F. Jin, , K. P. Sooraj, , and I.-S. Kang, 2008a: State-dependent atmospheric noise associated with ENSO. Geophys. Res. Lett., 35, L05701, doi:10.1029/2007GL032017.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , I.-S. Kang, , and D.-H. Choi, 2008b: Seasonal climate predictability with tier-one and tier-two prediction systems. Climate Dyn., 31, 403416, doi:10.1007/s00382-007-0264-7.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009a: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , K. P. Sooraj, , F.-F. Jin, , J.-J. Luo, , and M.-H. Kwon, 2009b: Impact of Indian Ocean dipole on high-frequency atmospheric variability over the Indian Ocean. Atmos. Res., 94, 134139.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , K. P. Sooraj, , D. Kim, , I.-S. Kang, , F.-F. Jin, , Y. N. Takayabu, , and M. Kimoto, 2009c: Simulation of state-dependent high-frequency atmospheric variability associated with ENSO. Climate Dyn., 32, 635648.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , M.-S. Ahn, , M.-K. Sung, , S.-W. Yeh, , H.-S. Min, , and Y.-H. Kim, 2010a: Statistical relationship between two types of El Niño events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467474.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , J. Choi, , S.-I. An, , F.-F. Jin, , and A. T. Wittenberg, 2010b: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , K.-P. Sooraj, , T. Li, , and F.-F. Jin, 2010c: Precursors of El Niño/La Niña onset and their interrelationship. J. Geophys. Res., 115, D05106, doi:10.1029/2009JD012861.

    • Search Google Scholar
    • Export Citation
  • Lau, K., , and N. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539.

    • Search Google Scholar
    • Export Citation
  • Lee, M., , I.-S. Kang, , J. Kim, , and B. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106 (D13), 14 21914 233.

    • Search Google Scholar
    • Export Citation
  • Lee, M., , I.-S. Kang, , and B. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963992.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., , J.-P. Boulanger, , C. Menkes, , S. Masson, , G. Madec, , and P. Delacluse, 2002: Ocean response to the March 1997 westerly wind event. J. Geophys. Res., 107, 8015, doi:10.1029/2001JC000841.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., , E. Guilyardi, , J. P. Boulanger, , C. Menkes, , P. Delecluse, , P. Inness, , J. Cole, , and J. M. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., , and Z.-X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5, 175187.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954.

  • McPhaden, M. J., , F. Bahr, , Y. Dupenhoat, , E. Firing, , S. P. Hayes, , P. Niiler, , P. L. Richardson, , and J. M. Toole, 1992: The response of the western equatorial Pacific Ocean to westerly wind bursts during November 1989 to January 1990. J. Geophys. Res., 97 (C9), 14 28914 303.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103 (C7), 14 16914 240.

    • Search Google Scholar
    • Export Citation
  • Moore, A., , and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220.

  • Nakajima, T., , M. Tsukamoto, , Y. Tsushima, , and A. Numaguti, 1995: Modelling of the radiative processes in an AGCM. Climate System Dynamics and Modelling, T. Matsuno, Ed., Center for Climate System Research, 104123.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , M. Takahashi, , T. Nakajima, , and A. Sumi, 1995: Development of an atmospheric general circulation model. Climate System Dynamics and Modelling, T. Matsuno, Ed., Center for Climate System Research, 127.

    • Search Google Scholar
    • Export Citation
  • Perez, C., , A. Moore, , J. Zavala-Garay, , and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18, 50665085.

    • Search Google Scholar
    • Export Citation
  • Philip, S. Y., , and G. J. van Oldenborgh, 2009: Significant atmospheric nonlinearities in the ENSO cycle. J. Climate, 22, 40144028.

  • Rodgers, K., , P. Friederichs, , and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 37613774.

    • Search Google Scholar
    • Export Citation
  • Seiki, A., , and Y. Takayabu, 2007a: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 33253345.

    • Search Google Scholar
    • Export Citation
  • Seiki, A., , and Y. Takayabu, 2007b: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: Energetics over the western and central Pacific. Mon. Wea. Rev., 135, 33463361.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , and H. Hendon, 2002: Rectified wind forcing and latent heat flux produced by the Madden–Julian oscillation. J. Climate, 15, 35003508.

    • Search Google Scholar
    • Export Citation
  • Smith, T., , and R. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16, 14951510.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , and C. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 31063127.

    • Search Google Scholar
    • Export Citation
  • Sokolikhina, E. V., , E. K. Semenov, , and N. N. Sokolikhina, 2006: The atmospheric circulation on the synoptic scale during the culmination phase of the El-Niño – Southern Oscillation events (1997–1998). Adv. Geosci., 6, 1721.

    • Search Google Scholar
    • Export Citation
  • Sooraj, K., , D. Kim, , J.-S. Kug, , S.-W. Yeh, , F.-F. Jin, , and I.-S. Kang, 2009: Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Climate Dyn., 33, 495507.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proc. ECMWF Workshop on Convection in Large-Scale Models, Reading, United Kingdom, ECMWF, 297–316.

  • Timmermann, A., , and G. Lohmann, 2000: Noise-induced transitions in a simplified model of the thermohaline circulation. J. Phys. Oceanogr., 30, 18911900.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , F.-F. Jin, , and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152165.

  • Trenberth, K., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Vecchi, G. A., , and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 18141830.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., , K. M. Lau, , W. Stern, , and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350.

    • Search Google Scholar
    • Export Citation
  • Webster, P., , and H. Chang, 1988: Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803829.

    • Search Google Scholar
    • Export Citation
  • Weng, H., , K. Ashok, , S. K. Behera, , S. A. Rao, , and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113129, doi:10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. Kirtman, 2006: Changes in spread and predictability associated with ENSO in an ensemble coupled GCM. J. Climate, 19, 43784396.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , R. A. Weller, , and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, doi:10.1029/2002JC001498.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., , C. Zhang, , A. Moore, , and R. Kleeman, 2005: The linear response of ENSO to the Madden–Julian oscillation. J. Climate, 18, 24412459.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 3
PDF Downloads 6 6 4

Rectification Feedback of High-Frequency Atmospheric Variability into Low-Frequency Zonal Flows in the Tropical Pacific

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research Studies and Investigations, Universities Space Research Association, Columbia, Maryland
  • | 2 Korea Ocean Research and Development Institute, Ansan, South Korea
  • | 3 School of Earth and Environment Sciences, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

In this study, the rectification process of high-frequency (HF) zonal-wind variability on the low-frequency (LF) zonal wind is investigated through an idealized experiment using an atmospheric general circulation model (AGCM). Through an idealized AGCM experiment with a fixed SST boundary forcing, it is shown that there is positive (negative) correlation between HF (2–90-day period) zonal-wind variance and LF (3-month average) zonal wind where the HF zonal-wind variance is positively (negatively) skewed because the stronger HF westerly (easterly) wind events than HF easterly (westerly) wind events induce a residual westerly (easterly), and it results in an additional rectified LF westerly (easterly) anomaly. This means that, over regions with positively skewed HF zonal winds, LF westerly anomalies are generated due to the residuals of the HF zonal winds. It implies that the LF zonal wind can be generated through internal processes of the atmosphere without external forcing and the interaction between LF and HF is not a one-way process from LF to HF but, rather, a two-way interaction process.

Corresponding author address: Dr. Jong-Seong Kug, Korea Ocean Research and Development Institute, Ansan 435-600, South Korea. E-mail: jskug@kordi.re.kr

Abstract

In this study, the rectification process of high-frequency (HF) zonal-wind variability on the low-frequency (LF) zonal wind is investigated through an idealized experiment using an atmospheric general circulation model (AGCM). Through an idealized AGCM experiment with a fixed SST boundary forcing, it is shown that there is positive (negative) correlation between HF (2–90-day period) zonal-wind variance and LF (3-month average) zonal wind where the HF zonal-wind variance is positively (negatively) skewed because the stronger HF westerly (easterly) wind events than HF easterly (westerly) wind events induce a residual westerly (easterly), and it results in an additional rectified LF westerly (easterly) anomaly. This means that, over regions with positively skewed HF zonal winds, LF westerly anomalies are generated due to the residuals of the HF zonal winds. It implies that the LF zonal wind can be generated through internal processes of the atmosphere without external forcing and the interaction between LF and HF is not a one-way process from LF to HF but, rather, a two-way interaction process.

Corresponding author address: Dr. Jong-Seong Kug, Korea Ocean Research and Development Institute, Ansan 435-600, South Korea. E-mail: jskug@kordi.re.kr
Save