• Battaglia, A., , and C. Simmer, 2008: How does multiple scattering affect the spaceborne W-band radar measurements at ranges close to and crossing the sea-surface range? IEEE Trans. Geosci. Remote Sens., 46, 16441651, doi:10.1109/TGRS.2008.916085.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., , M. J. Webb, , M. E. Brooks, , M. A. Ringer, , K. D. Williams, , S. F. Milton, , and D. R. Wilson, 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., , and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus, 47B, 281300.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95 (D10), 16 60116 615.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , S. Bony, , D. Winker, , M. Chiriaco, , J.-L. Dufresne, , and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, doi:10.1029/2008GL034207.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , S. Bony, , D. Winker, , G. Cesana, , J.-L. Dufresne, , P. Minnis, , C. J. Stubenrauch, , and S. Zeng, 2010: The GCM-oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Frisch, S., , M. Shupe, , I. Djalalova, , G. Feingold, , and M. Poellot, 2002: The retrieval of stratus cloud droplet effective radius with cloud radars. J. Atmos. Oceanic Technol., 19, 835842.

    • Search Google Scholar
    • Export Citation
  • Gehlot, S., , and J. Quaas, 2012: Convection-climate feedbacks in the ECHAM5 general circulation model: Evaluation of cirrus cloud life cycles with ISCCP satellite data from a Lagrangian trajectory perspective. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , K. Arpe, , and E. Roeckner, 2006: Evaluation of the hydrological cycle in the ECHAM5 model. J. Climate, 19, 38103827.

  • Haynes, J. M., 2007: QuickBeam radar simulation software user’s guide v 1.1a. Department of Atmospheric Science, Colorado State University, 18 pp.

  • Haynes, J. M., , Z. Luo, , G. L. Stephens, , R. T. Marchand, , and A. Bodas-Salcedo, 2007: A multipurpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 17231727.

    • Search Google Scholar
    • Export Citation
  • Klein, S., , and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECWMF model. Mon. Wea. Rev., 127, 25142531.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., , and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462068.

  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2008: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM4 general circulation model. Climate Dyn., 12, 557572.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , R. Marchand, , Q. Zhang, , and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , G. G. Mace, , T. Ackerman, , and G. Stephens, 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHZ cloud radar. J. Atmos. Oceanic Technol., 25, 519533.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , J. Haynes, , G. G. Mace, , T. Ackerman, , and G. Stephens, 2009: A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations. J. Geophys. Res., 114, D00A20, doi:10.1029/2008JD009790.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., , S. A. McFarlane, , M. A. Miller, , and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, doi:10.1029/2006JD007555.

    • Search Google Scholar
    • Export Citation
  • Moss, S. J., , P. N. Francis, , and D. G. Johnson, 1996: Calculation and parameterization of the effective radius of ice particles using aircraft data. Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, Switzerland, International Commission on Clouds and Precipitation and International Association of Meteorology and Atmospheric Science, 1255–1258.

  • Neggers, R. A. J., , A. P. Siebesma, , G. Lenderink, , and A. A. M. Holtstag, 2004: An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon. Wea. Rev., 132, 25252538.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact upon the mean and transient activity of the model in the tropics. ECMWF Tech. Rep. 206, 41 pp.

  • Ringer, M. A., and Coauthors, 2006: Global mean cloud feedbacks in idealized climate change experiments. Geophys. Res. Lett., 33, L07718, doi:10.1029/2005GL025370.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part 1: Model description. Max Planck Institute for Meteorology Tech. Rep. 349, 127 pp.

  • Soden, B. J., , and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., , S. L. Durden, , E. Im, , K. S. Pak, , D. G. Reinke, , P. Partain, , J. M. Haynes, , and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942.

    • Search Google Scholar
    • Export Citation
  • Webb, M., , C. Senior, , S. Bony, , and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECWMF and LMD atmospheric climate models. Climate Dyn., 17, 905922.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , C. A. Hostetler, , M. A. Vaughan, , and A. H. Omar, 2006: CALIOP Algorithm Theoretical Basis Document. Part 1: CALIOP instrument, and algorithms overview, release 2.0. NASA Langley Research Center Tech. Rep. PC-SCI-202, 29 pp.

  • Winker, D. M., , W. Hunt, , and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Wyser, K., 1998: The effective radius in ice clouds. J. Climate, 11, 17931802.

  • Xie, P., , and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 4
PDF Downloads 25 25 3

Evaluation of Clouds and Precipitation in the ECHAM5 General Circulation Model Using CALIPSO and CloudSat Satellite Data

View More View Less
  • 1 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

Observations from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat satellites are used to evaluate clouds and precipitation in the ECHAM5 general circulation model. Active lidar and radar instruments on board CALIPSO and CloudSat allow the vertical distribution of clouds and their optical properties to be studied on a global scale. To evaluate the clouds modeled by ECHAM5 with CALIPSO and CloudSat, the lidar and radar satellite simulators of the Cloud Feedback Model Intercomparison Project’s Observation Simulator Package are used. Comparison of ECHAM5 with CALIPSO and CloudSat found large-scale features resolved by the model, such as the Hadley circulation, are captured well. The lidar simulator demonstrated ECHAM5 overestimates the amount of high-level clouds, particularly optically thin clouds. High-altitude clouds in ECHAM5 consistently produced greater lidar scattering ratios compared with CALIPSO. Consequently, the lidar signal in ECHAM5 frequently attenuated high in the atmosphere. The large scattering ratios were due to an underestimation of effective ice crystal radii in ECHAM5. Doubling the effective ice crystal radii improved the scattering ratios and frequency of attenuation. Additionally, doubling the effective ice crystal radii improved the detection of ECHAM5’s highest-level clouds by the radar simulator, in better agreement with CloudSat. ECHAM5 was also shown to significantly underestimate midlevel clouds and (sub)tropical low-level clouds. The low-level clouds produced were consistently perceived by the lidar simulator as too optically thick. The radar simulator demonstrated ECHAM5 overestimates the frequency of precipitation, yet underestimates its intensity compared with CloudSat observations. These findings imply compensating mechanisms in ECHAM5 balance out the radiative imbalance caused by incorrect optical properties of clouds and consistently large hydrometeors in the atmosphere.

Current affiliation: Laboratoire de Météorologie Dynamique, IPSL, Paris, France.

Current affiliation: University of Leipzig, Leipzig, Germany.

Corresponding author address: Christine C. W. Nam, Laboratoire de Météorologie Dynamique, IPSL, Tour 45–55, 4 Place Jussieu, 75005 Paris, France. E-mail: christine.nam@lmd.jussieu.fr

Abstract

Observations from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat satellites are used to evaluate clouds and precipitation in the ECHAM5 general circulation model. Active lidar and radar instruments on board CALIPSO and CloudSat allow the vertical distribution of clouds and their optical properties to be studied on a global scale. To evaluate the clouds modeled by ECHAM5 with CALIPSO and CloudSat, the lidar and radar satellite simulators of the Cloud Feedback Model Intercomparison Project’s Observation Simulator Package are used. Comparison of ECHAM5 with CALIPSO and CloudSat found large-scale features resolved by the model, such as the Hadley circulation, are captured well. The lidar simulator demonstrated ECHAM5 overestimates the amount of high-level clouds, particularly optically thin clouds. High-altitude clouds in ECHAM5 consistently produced greater lidar scattering ratios compared with CALIPSO. Consequently, the lidar signal in ECHAM5 frequently attenuated high in the atmosphere. The large scattering ratios were due to an underestimation of effective ice crystal radii in ECHAM5. Doubling the effective ice crystal radii improved the scattering ratios and frequency of attenuation. Additionally, doubling the effective ice crystal radii improved the detection of ECHAM5’s highest-level clouds by the radar simulator, in better agreement with CloudSat. ECHAM5 was also shown to significantly underestimate midlevel clouds and (sub)tropical low-level clouds. The low-level clouds produced were consistently perceived by the lidar simulator as too optically thick. The radar simulator demonstrated ECHAM5 overestimates the frequency of precipitation, yet underestimates its intensity compared with CloudSat observations. These findings imply compensating mechanisms in ECHAM5 balance out the radiative imbalance caused by incorrect optical properties of clouds and consistently large hydrometeors in the atmosphere.

Current affiliation: Laboratoire de Météorologie Dynamique, IPSL, Paris, France.

Current affiliation: University of Leipzig, Leipzig, Germany.

Corresponding author address: Christine C. W. Nam, Laboratoire de Météorologie Dynamique, IPSL, Tour 45–55, 4 Place Jussieu, 75005 Paris, France. E-mail: christine.nam@lmd.jussieu.fr
Save