• Ambrizzi, T., , and B. J. Hoskins, 1997: Stationary Rossby-wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysical Series, Vol. 40, Academic Press, 489 pp.

  • Ashok, K., , S. K. Behera, , S. A. Rao, , H. Weng, , and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Austin, J., , and N. Butchart, 1992: A three-dimensional modeling study of the influence of planetary wave dynamics on polar ozone photochemistry. J. Geophys. Res., 97, 10 16510 186.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374.

    • Search Google Scholar
    • Export Citation
  • Camp, C. D., , and K.-K. Tung, 2007: Stratospheric polar warming by ENSO in winter: A statistical study. Geophys. Res. Lett., 34, L04809, doi:10.1029/2006GL028521.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , A. C. Clement, , A. Kaplan, , Y. Kushnir, , D. Pozdnyakov, , R. Seager, , S. E. Zebiak, , and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., , T. Delcroix, , D. Zhang, , M. McPhaden, , and J. Leloup, 2009: Observed freshening and warming of the western Pacific warm pool. Climate Dyn., 33, 565589, doi:10.1007/s00382-009-0526-7.

    • Search Google Scholar
    • Export Citation
  • Deckert, R., , and M. Dameris, 2008: Higher tropical SSTs strengthen the tropical upwelling via deep convection. Geophys. Res. Lett., 35, L10813, doi:10.1029/2008GL033719.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , E. J. Steig, , D. S. Battisti, , and M. Küettel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/NGEO1129.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., , and D. L. Hartmann, 2005: Changes in the strength of the Brewer-Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32, L15807, doi:10.1029/2005GL022924.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2005: A strategy for process-oriented validation of coupled chemistry–climate models. Bull. Amer. Meteor. Soc., 86, 11171133.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., , and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997.

    • Search Google Scholar
    • Export Citation
  • Free, M., , and D. J. Seidel, 2009: Observed El Niño–Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res., 114, D23108, doi:10.1029/2009JD012420.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. Solomon, , and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 26432653.

    • Search Google Scholar
    • Export Citation
  • Fusco, A. C., , and M. L. Salby, 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate, 12, 16191629.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Garny, H., , M. Dameris, , W. J. Randel, , G. E. Bodeker, , and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 12141233.

    • Search Google Scholar
    • Export Citation
  • Grassi, B., , G. Redaelli, , and G. Visconti, 2008: Tropical SST preconditioning of the SH polar vortex during winter 2002. J. Climate, 21, 52955303.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., , R. Seager, , N. Naik, , M. Cane, , and M. Ting, 2010: The role of linear wave refraction in the transient eddy-mean flow response to tropical Pacific SST anomalies. Quart. J. Roy. Meteor. Soc., 136, 21322146.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , and M. J. Rogal, 2010: ENSO influences on Southern Hemisphere column ozone during the winter to spring transition. J. Geophys. Res., 115, D20104, doi:10.1029/2009JD012844.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , and Q. Fu, 2009: Stratospheric warming in Southern Hemisphere high latitudes since 1979. Atmos. Chem. Phys., 9, 43294340.

  • Hurwitz, M. M., , P. A. Newman, , L. D. Oman, , and A. M. Molod, 2011: Response of the Antarctic stratosphere to two types of El Niño events. J. Atmos. Sci., 68, 812822.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., , and B. J. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17, 48824892.

  • Ineson, S., , and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., , and Q. Fu, 2007: Antarctic atmospheric temperature trend patterns from satellite observations. Geophys. Res. Lett., 34, L12703, doi:10.1029/2006GL029108.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woolen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., , and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632.

  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., , and B. J. Hoskins, 1982: Three dimensional propagation of planetary waves. J. Meteor. Soc. Japan, 60, 109123.

  • Kasahara, A., , and P. L. da Silva Dias, 1986: Response of planetary waves to stationary tropical heating in a global atmosphere with meridional and vertical shear. J. Atmos. Sci., 43, 18931912.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., 1994: A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J. Phys. Oceanogr., 24, 707715.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1999: Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J. Climate, 12, 28082830.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Lee, T., , and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287.

    • Search Google Scholar
    • Export Citation
  • Li, F., , R. S. Stolarski, , and P. A. Newman, 2009: Stratospheric ozone in the post-CFC era. Atmos. Chem. Phys., 9, 22072213.

  • Li, S., , J. Perlwitz, , M. P. Hoerling, , and X. Chen, 2010: Opposite annular responses of the Northern and Southern Hemispheres to Indian Ocean warming. J. Climate, 23, 37203738.

    • Search Google Scholar
    • Export Citation
  • Lin, P., , Q. Fu, , S. Solomon, , and J. M. Wallace, 2009: Temperature trend patterns in Southern Hemisphere high latitudes: Novel indicators of stratospheric change. J. Climate, 22, 63256341.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., , M. A. Giorgetta, , M. Esch, , L. Kornblueh, , and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., , D. L. Hartmann, , and J. D. Farrara, 1985: Climatology and interannual variability of wave, mean-flow interaction in the Southern Hemisphere. J. Atmos. Sci., 42, 21892206.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., , M. R. Schoeberl, , and J. E. Nielsen, 2007: Response of stratospheric circulation and stratosphere-troposphere exchange to changing sea surface temperatures. J. Geophys. Res., 112, D16104, doi:10.1029/2006JD008012.

    • Search Google Scholar
    • Export Citation
  • Oman, L. D., , D. W. Waugh, , S. Pawson, , R. S. Stolarski, , and P. A. Newman, 2009: On the influence of anthropogenic forcings on changes in the stratospheric mean age. J. Geophys. Res., 114, D03105, doi:10.1029/2008JD010378.

    • Search Google Scholar
    • Export Citation
  • Oman, L. D., and Coauthors, 2010: Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. J. Geophys. Res., 115, D24306, doi:10.1029/2010JD014362.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Polvani, L. M., , and R. A. Plumb, 1992: Rossby wave breaking, microbreaking, filamentation, and secondary vortex formation: The dynamics of a perturbed vortex. J. Atmos. Sci., 49, 462476.

    • Search Google Scholar
    • Export Citation
  • Quintanar, A. I., , and C. R. Mechoso, 1995: Quasi-stationary waves in the Southern Hemisphere. Part II: Generation mechanisms. J. Climate, 8, 26732690.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1988: The seasonal evolution of planetary waves in the Southern Hemisphere stratosphere and troposphere. Quart. J. Roy. Meteor. Soc., 114, 13851409.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. R. Garcia, , N. Calvo, , and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteen century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2002: On the midlatitude thermal response to tropical warmth. Geophys. Res. Lett., 29, 1190, doi:10.1029/2001GL014158.

  • Rosenlof, K. H., , and J. R. Holton, 1993: Estimates of the stratospheric residual circulation using the downward control principle. J. Geophys. Res., 98, 10 46510 479.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., , D. Kinneson, , B. A. Boville, , R. R. Garcia, , and R. Roble, 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Harnik, , and Y. Kushnir, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

  • Shepherd, T. G., , and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , C. G. Fletcher, , and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 60366050.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316, doi:10.1029/1999RG900008.

    • Search Google Scholar
    • Export Citation
  • SPARC CCMVal, 2010: SPARC report on the evaluation of Chemistry-Climate Models. V. Eyring, T. G. Shepherd, D. W. Waugh, Eds., SPARC Rep. 5, WCRP-132, WMO/TD-1526, 499 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Taguchi, M., , and D. L. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19, 324332.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Tung, K.-K., , and J. Zhou, 2010: The Pacific’s response to surface heating in 130 yr of SST: La Niña–like or El Niño–like? J. Atmos. Sci., 67, 26472657.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., , and J. M. Wallace, 2010: To what extent does high-latitude wave forcing drive tropical upwelling in the Brewer–Dobson circulation? J. Atmos. Sci., 67, 12321246.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wallace, J. M., , C. Smith, , and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 8
PDF Downloads 26 26 8

Impact of Tropical SST on Stratospheric Planetary Waves in the Southern Hemisphere

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The impact of tropical sea surface temperature (SST) on stratospheric planetary waves in the Southern Hemisphere (SH) is investigated in austral spring using observed SST and reanalysis data for the past three decades. Maximum covariance analysis indicates that the tropical SST and the SH stratospheric planetary wave activity are primarily coupled through two modes. The leading two modes show the La Niña–like and the central-Pacific El Niño–like SST anomalies in their positive polarities, respectively, which each are related to enhanced stratospheric planetary wave activity. These two modes also introduce phase shifts to the stratospheric stationary planetary waves: a westward shift is seen for La Niña and an eastward shift for warm SST anomalies is seen in the central Pacific. The Eliassen–Palm fluxes associated with the two modes indicate that the anomalous stratospheric wave activity originates in the troposphere and propagates upward over the mid–high latitudes, so that the linkages between tropical SST and extratropical tropospheric circulation appear to play a key role. Furthermore, the observed circulation anomaly patterns for the two modes change rapidly from spring to summer, consistent with a sharp seasonal transition in the SH basic state. Similar SST and circulation anomaly patterns associated with the two modes are simulated in chemistry–climate models.

Additional affiliation: College of Atmospheric Sciences, Lanzhou University, Lanzhou, China.

Corresponding author address: Pu Lin, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98105. E-mail: plin@atmos.washington.edu

Abstract

The impact of tropical sea surface temperature (SST) on stratospheric planetary waves in the Southern Hemisphere (SH) is investigated in austral spring using observed SST and reanalysis data for the past three decades. Maximum covariance analysis indicates that the tropical SST and the SH stratospheric planetary wave activity are primarily coupled through two modes. The leading two modes show the La Niña–like and the central-Pacific El Niño–like SST anomalies in their positive polarities, respectively, which each are related to enhanced stratospheric planetary wave activity. These two modes also introduce phase shifts to the stratospheric stationary planetary waves: a westward shift is seen for La Niña and an eastward shift for warm SST anomalies is seen in the central Pacific. The Eliassen–Palm fluxes associated with the two modes indicate that the anomalous stratospheric wave activity originates in the troposphere and propagates upward over the mid–high latitudes, so that the linkages between tropical SST and extratropical tropospheric circulation appear to play a key role. Furthermore, the observed circulation anomaly patterns for the two modes change rapidly from spring to summer, consistent with a sharp seasonal transition in the SH basic state. Similar SST and circulation anomaly patterns associated with the two modes are simulated in chemistry–climate models.

Additional affiliation: College of Atmospheric Sciences, Lanzhou University, Lanzhou, China.

Corresponding author address: Pu Lin, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98105. E-mail: plin@atmos.washington.edu
Save