• Adegoke, J. O., , R. Pielke, , and A. M. Carleton, 2007: Observational and modeling studies of the impacts of agriculture-related land use change on planetary boundary layer processes in the central US. Agric. For. Meteor., 142, 203215.

    • Search Google Scholar
    • Export Citation
  • Allard, J., , and A. M. Carleton, 2010: Mesoscale associations between Midwest land surface properties and convective cloud development in the warm season. Phys. Geogr., 31, 107136.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , P. Viterbo, , M. J. Miller, , and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37, 449486.

  • Bonan, G. B., and Coauthors, 2011: Improving canopy processes in the Community Land Model (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res., 116, G02014, doi:10.1029/2010JG001593.

    • Search Google Scholar
    • Export Citation
  • Bondeau, A., and Coauthors, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol., 13, 679706, doi:10.1111/j.1365-2486.2006.01305.x.

    • Search Google Scholar
    • Export Citation
  • Castillo, C. K. G., , S. Levis, , and P. E. Thornton, 2012: Evaluation of the new CNDV option of the Community Land Model: Effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J. Climate, 25, 37023714.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , R. L. Miller, , and R. Seager, 2009: Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA, 106, 49975001.

    • Search Google Scholar
    • Export Citation
  • Corbin, K. D., , A. S. Denning, , E. Y. Lokupitiya, , A. E. Schuh, , N. L. Miles, , K. J. Davis, , S. Richardson, , and I. T. Baker, 2010: Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus, 62B, 521532.

    • Search Google Scholar
    • Export Citation
  • Donner, S. D., , and C. J. Kucharik, 2003: Evaluating the impacts of land management and climate variability on crop production and nitrate export across the Upper Mississippi Basin. Global Biogeochem. Cycles, 17, 1085, doi:10.1029/2001GB001808.

    • Search Google Scholar
    • Export Citation
  • Flénet, F., , J. R. Kiniry, , J. E. Board, , M. E. Westgate, , and D. C. Reicosky, 1996: Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. Agron. J., 88, 185190.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and Coauthors, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628.

    • Search Google Scholar
    • Export Citation
  • Füssel, H.-M., 2010: Modeling impacts and adaptation in global IAMs. WIREs Climate Change, 1, 288303.

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991.

  • Gervois, S., , P. Ciais, , N. de Noblet-Ducoudré, , N. Brisson, , N. Vuichard, , and N. Viovy, 2008: Carbon and water balance of European croplands throughout the 20th century. Global Biogeochem. Cycles, 22, GB2022, doi:10.1029/2007GB003018.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., , A. Tat, , and R. L. Raddatz, 2009: Initial soil moisture as a predictor of subsequent severe summer weather in the cropped grassland of the Canadian Prairie provinces. Int. J. Climatol., 29, 899909.

    • Search Google Scholar
    • Export Citation
  • Hodges, T., , D. Botner, , C. Sakamoto, , and J. H. Haug, 1987: Using the CERES-MAIZE model to estimate production for the United States corn belt. Agric. For. Meteor., 40, 293303.

    • Search Google Scholar
    • Export Citation
  • Jung, M., , M. Reichstein, , and A. Bondeau, 2009: Towards global empirical upscaling eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosci. Discuss., 6, 52715304.

    • Search Google Scholar
    • Export Citation
  • Kattge, J., , W. Knorr, , T. Raddatz, , and C. Wirth, 2009: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol., 15, 976991.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., , and G. Wang, 2007: Impact of initial soil moisture anomalies on subsequent precipitation over North America in the coupled land–atmosphere model CAM3-CLM3. J. Hydrometeor., 8, 513533.

    • Search Google Scholar
    • Export Citation
  • Kluzek, E., cited 2011: CESM research tools: CLM4 in CESM1.0.3 user’s guide documentation. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/clm/index.shtml.]

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Kucharik, C. J., 2003: Evaluation of a process-based agroecosystem model (Agro-IBIS) across the U.S. corn belt: Simulations of the interannual variability in maize yield. Earth Interact.,7. [Available online at http://EarthInteractions.org.]

  • Kucharik, C. J., , and K. R. Brye, 2003: Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J. Environ. Qual., 32, 247268.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , and T. E. Twine, 2007: Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agric. For. Meteor., 146, 134158.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , J. A. Foley, , C. Delire, , V. A. Fisher, , M. T. Coe, , J. D. Lenters, , C. Young-Molling, , and N. Ramankutty, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795825.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., , K. W. Oleson, , M. G. Flanner, , C. G. Fletcher, , P. J. Lawrence, , S. Levis, , S. C. Swenson, , and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260.

    • Search Google Scholar
    • Export Citation
  • Levis, S., 2010: Modeling vegetation and land use in models of the earth system. WIREsClimate Change, 1, 840856, doi:10.1002/wcc.83.

    • Search Google Scholar
    • Export Citation
  • Levis, S., , and W. J. Sacks, cited 2011: Technical descriptions of the interactive crop management (CLM4CNcrop) and interactive irrigation models in version 4 of the Community Land Model. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/clm/index.shtml.]

  • Levis, S., , P. Thornton, , G. Bonan, , and C. Kucharik, 2009: Modeling land use and land management with the Community Land Model. iLeaps Newsletter, No. 7, University of Helsinki, Helsinki, Finland, 10–12.

  • Lokupitiya, E., and Coauthors, 2009: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences, 6, 969986.

    • Search Google Scholar
    • Export Citation
  • Lu, L., , R. A. Pielke Sr., , G. E. Liston, , W. J. Parton, , D. Ojima, , and M. Hartman, 2001: Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States. J. Climate, 14, 900919.

    • Search Google Scholar
    • Export Citation
  • Masarie, K. A., , and P. P. Tans, 1995: Extension and integration of atmospheric carbon-dioxide data into a globally consistent measurement record. J. Geophys. Res., 100D, 11 59311 610.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., , T. Mavromatis, , E. Tsvetsinskaya, , C. Hays, , and W. E. Easterling, 1999: Comparative responses of EPIC and CERES crop models to high and low spatial resolution climate change scenarios. J. Geophys. Res., 104D, 66236646.

    • Search Google Scholar
    • Export Citation
  • Meyers, T. P., , and S. E. Hollinger, 2004: An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteor., 125, 105115.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., , G. B. Bonan, , S. Levis, , and M. Vertenstein, 2004: Effects of land use change on North American climate: Impact of surface datasets and model biogeophysics. Climate Dyn., 23, 117132.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

  • Osborne, T. M., , D. M. Lawrence, , A. J. Challinor, , J. M. Slingo, , and T. R. Wheeler, 2007: Development and assessment of a coupled crop–climate model. Global Change Biol., 13, 169183, doi:10.1111/j.1365-2486.2006.01274.x.

    • Search Google Scholar
    • Export Citation
  • Osborne, T. M., , J. M. Slingo, , D. M. Lawrence, , and T. R. Wheeler, 2009: Examining the interaction of growing crops with local climate using a coupled crop–climate model. J. Climate, 22, 13931411.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Raddatz, R. L., 1998: Anthropogenic vegetation transformation and the potential for deep convection on the Canadian prairies. Can. J. Soil Sci., 78, 657666.

    • Search Google Scholar
    • Export Citation
  • Raddatz, R. L., 1999: Anthropogenic vegetation transformation and maximum temperatures on the Canadian prairies. CMOS Bull., 27, 167173.

    • Search Google Scholar
    • Export Citation
  • Raddatz, R. L., 2007: Evidence for the influence of agriculture on weather and climate through the transformation and management of vegetation: Illustrated by examples from the Canadian prairies. Agric. For. Meteor., 142, 186202.

    • Search Google Scholar
    • Export Citation
  • Raddatz, R. L., , and J. D. Cummine, 2003: Inter-annual variability of moisture flux from the prairie agro-ecosystem: Impact of crop phenology on the seasonal pattern of tornado days. Bound.-Layer Meteor., 106, 283295.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., , and J. A. Foley, 1998: Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochem. Cycles, 12, 667685.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., and Coauthors, 2009: Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Global Change Biol., 15, 24622484, doi:10.1111/j.1365-2486.2009.01912.x.

    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., , B. I. Cook, , N. Buenning, , S. Levis, , and J. H. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175, doi:10.1007/s00382-008-0445-z.

    • Search Google Scholar
    • Export Citation
  • Stehfest, E., , M. Heistermann, , J. A. Priess, , D. S. Ojima, , and J. Alcamo, 2007: Simulation of global crop production with the ecosystem model DayCent. Ecol. Modell., 209, 203219.

    • Search Google Scholar
    • Export Citation
  • Thenkabail, P. S., , R. B. Smith, , and E. De Pauw, 2000: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ., 71, 158182.

    • Search Google Scholar
    • Export Citation
  • Tsvetsinskaya, E. A., , L. O. Mearns, , and W. E. Easterling, 2001a: Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part I: Simulation of surface fluxes over the growing season. J. Climate, 14, 692709.

    • Search Google Scholar
    • Export Citation
  • Tsvetsinskaya, E. A., , L. O. Mearns, , and W. E. Easterling, 2001b: Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part II: Atmospheric response to crop growth and development. J. Climate, 14, 711729.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., , and C. J. Kucharik, 2008: Evaluating a terrestrial ecosystem model with satellite information of greenness. J. Geophys. Res., 113, G03027, doi:10.1029/2007JG000599.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., , C. J. Kucharik, , and J. A. Foley, 2004: Effects of land cover change on the energy and water balance of the Mississippi River basin. J. Hydrometeor., 5, 640655.

    • Search Google Scholar
    • Export Citation
  • VanLoocke, A., , C. J. Bernacchi, , and T. E. Twine, 2010: The impacts of Miscanthus x giganteus production on the Midwest U.S. hydrologic cycle. Global Change Biol. Bioenergy, 2, 180191, doi:10.1111/j.1757-1707.2010.01053.x.

    • Search Google Scholar
    • Export Citation
  • Verma, S. B., and Coauthors, 2005: Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric. For. Meteor., 131, 7796.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., , and K. Matsuura, cited 2000: Terrestrial air temperature and precipitation: Monthly and annual climatologies. [Available online at http://climate.geog.udel.edu/~climate.]

  • Wilson, K. B., , P. J. Hanson, , P. J. Mulholland, , D. D. Baldocchi, , and S. D. Wullschleger, 2001: A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteor., 106, 153168, doi:10.1016/S0168-1923(00)00199-4.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , M. J. Fennessy, , and P. J. Sellers, 1996: Impact of vegetation properties on U.S. summer weather prediction. J. Geophys. Res., 101D, 74197430.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 28
PDF Downloads 103 103 24

Interactive Crop Management in the Community Earth System Model (CESM1): Seasonal Influences on Land–Atmosphere Fluxes

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Oak Ridge National Laboratory, Oak Ridge, Tennessee
  • | 3 Lawrence Berkeley National Laboratory, Berkeley, California
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
  • | 5 University of Wisconsin—Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

The Community Earth System Model, version 1 (CESM1) is evaluated with two coupled atmosphere–land simulations. The CTRL (control) simulation represents crops as unmanaged grasses, while CROP represents a crop managed simulation that includes special algorithms for midlatitude corn, soybean, and cereal phenology and carbon allocation. CROP has a more realistic leaf area index (LAI) for crops than CTRL. CROP reduces winter LAI and represents the spring planting and fall harvest explicitly. At the peak of the growing season, CROP simulates higher crop LAI. These changes generally reduce the latent heat flux but not around peak LAI (late spring/early summer). In midwestern North America, where corn, soybean, and cereal abundance is high, simulated peak summer precipitation declines and agrees better with observations, particularly when crops emerge late as is found from a late planting sensitivity simulation (LateP). Differences between the CROP and LateP simulations underscore the importance of simulating crop planting and harvest dates correctly. On the biogeochemistry side, the annual cycle of net ecosystem exchange (NEE) also improves in CROP relative to Ameriflux site observations. For a global perspective, the authors diagnose annual cycles of CO2 from the simulated NEE (CO2 is not prognostic in these simulations) and compare against representative GLOBALVIEW monitoring stations. The authors find an increased (thus also improved) amplitude of the annual cycle in CROP. These regional and global-scale refinements from improvements in the simulated plant phenology have promising implications for the development of the CESM and particularly for simulations with prognostic atmospheric CO2.

Corresponding author address: Samuel Levis, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: slevis@ucar.edu

This article is included in the CESM1 Special Collection.

Abstract

The Community Earth System Model, version 1 (CESM1) is evaluated with two coupled atmosphere–land simulations. The CTRL (control) simulation represents crops as unmanaged grasses, while CROP represents a crop managed simulation that includes special algorithms for midlatitude corn, soybean, and cereal phenology and carbon allocation. CROP has a more realistic leaf area index (LAI) for crops than CTRL. CROP reduces winter LAI and represents the spring planting and fall harvest explicitly. At the peak of the growing season, CROP simulates higher crop LAI. These changes generally reduce the latent heat flux but not around peak LAI (late spring/early summer). In midwestern North America, where corn, soybean, and cereal abundance is high, simulated peak summer precipitation declines and agrees better with observations, particularly when crops emerge late as is found from a late planting sensitivity simulation (LateP). Differences between the CROP and LateP simulations underscore the importance of simulating crop planting and harvest dates correctly. On the biogeochemistry side, the annual cycle of net ecosystem exchange (NEE) also improves in CROP relative to Ameriflux site observations. For a global perspective, the authors diagnose annual cycles of CO2 from the simulated NEE (CO2 is not prognostic in these simulations) and compare against representative GLOBALVIEW monitoring stations. The authors find an increased (thus also improved) amplitude of the annual cycle in CROP. These regional and global-scale refinements from improvements in the simulated plant phenology have promising implications for the development of the CESM and particularly for simulations with prognostic atmospheric CO2.

Corresponding author address: Samuel Levis, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: slevis@ucar.edu

This article is included in the CESM1 Special Collection.

Save