• Battisti, D. S., , U. S. Bhatt, , and M. A. Alexander, 1995: A modeling study of the interannual variability in the wintertime North Atlantic Ocean. J. Climate, 8, 30673083.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., , I. M. Held, , A. H. Sobel, , and A. Giannini, 2008: SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J. Climate, 21, 34713486.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 182.

  • Buizza, R., , and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and M. Ghil, 1995: Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr., 25, 25472568.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., , and J. Marshall, 2001: Observations of atmosphere-ocean coupling in the North Atlantic. Quart. J. Roy. Meteor. Soc., 127, 18931916.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., , M. K. Tippett, , and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 17431753.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , A. M. Mestas-Nunez, , and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686.

  • Farrell, B. F., 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46, 11931206.

  • Farrell, B. F., , and P. J. Ioannou, 1996: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53, 20252040.

  • Griffies, S. M., , and E. Tziperman, 1995: A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Climate, 8, 24402453.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and K. Bryan, 1997: Predictability of North Atlantic multidecadal climate variability. Science, 275, 181184.

  • Halliwell, G. R., 1998: Simulation of North Atlantic decadal/multidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies. J. Phys. Oceanogr., 28, 521.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93, 11 01511 021.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2009: Decadal predictability of the Atlantic Ocean in a coupled GCM: Forecast skill and optimal perturbations using linear inverse modeling. J. Climate, 22, 39603978.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , J. Robson, , R. Sutton, , D. Smith, , and N. Keenlyside, 2011: Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Climate Dyn., 37, 24952509.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., , M. A. Cane, , Y. Kushnir, , A. C. Clement, , M. B. Blumenthal, , and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. H., Johnson, , and J. Goodman, 2001: A study of the interaction of the North Atlantic oscillation with ocean circulation. J. Climate., 14, 13991421.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., , and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 14051446.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., , and R. Kleeman, 2001: The differences between the optimal perturbations of coupled models of ENSO. J. Climate, 14, 138163.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1986: Influence of Atlantic, Pacific and Indian Oceans on Sahel rainfall. Nature, 322, 251253.

  • Penland, C., , and L. Matrosova, 1994: A balance condition for stochastic numerical-models with application to the El Niño–Southern Oscillation. J. Climate, 7, 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., , and P. D. Sardeshmukh, 1995: The optimal-growth of tropical sea-surface temperature anomalies. J. Climate, 8, 19992024.

  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , P. Brohan, , D. E. Parker, , C. K. Folland, , J. J. Kennedy, , M. Vanicek, , T. J. Ansell, , and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., , and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118.

    • Search Google Scholar
    • Export Citation
  • Ting, M. F., , Y. Kushnir, , R. Seager, , and C. H. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., , L. Zanna, , and C. Penland, 2008: Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J. Phys. Oceanogr., 38, 588604.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2012: Analysis of the Atlantic meridional mode using linear inverse modeling: Seasonality and regional influences. J. Climate, 25, 11941212.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , J. Marotzke, , P. F. Cummins, , and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23, 3960.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2012: Covariances and linear predictability of the Atlantic Ocean. Deep-Sea Res., in press.

  • Zanna, L., , P. Heimbach, , A. M. Moore, , and E. Tziperman, 2012: Upper ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Quart. J. Roy. Meteor. Soc., 138, 500513.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S. J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 6
PDF Downloads 35 35 7

Forecast Skill and Predictability of Observed Atlantic Sea Surface Temperatures

View More View Less
  • 1 Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom
© Get Permissions
Restricted access

Abstract

An empirical statistical model is constructed to assess the forecast skill and the linear predictability of Atlantic Ocean sea surface temperature (SST) variability. Linear inverse modeling (LIM) is used to build a dynamically based statistical model using observed Atlantic SST anomalies between latitudes 20°S and 66°N from 1870 to 2009. LIM allows one to fit a multivariate red-noise model to the observed annually averaged SST anomalies and to test it. Forecast skill is assessed and is shown to be O(3–5 yr). After a few years, the skill is greatly reduced, especially in the subpolar region. In the stable dynamical system determined by LIM, skill of annual average SST anomalies arises from four damped eigenmodes. The four eigenmodes are shown to be relevant in particular for the optimal growth events of SST variance, with a pattern reminiscent of the low-frequency mode of variability, and in general for the predictability and variability of Atlantic SSTs on interannual time scales. LIM might serve as a useful benchmark for interannual and decadal forecasts of SST anomalies that are based on numerical models.

Corresponding author address: Laure Zanna, Atmospheric, Oceanic and Planetary Physics, Dept. of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom. E-mail: zanna@atm.ox.ac.uk

Abstract

An empirical statistical model is constructed to assess the forecast skill and the linear predictability of Atlantic Ocean sea surface temperature (SST) variability. Linear inverse modeling (LIM) is used to build a dynamically based statistical model using observed Atlantic SST anomalies between latitudes 20°S and 66°N from 1870 to 2009. LIM allows one to fit a multivariate red-noise model to the observed annually averaged SST anomalies and to test it. Forecast skill is assessed and is shown to be O(3–5 yr). After a few years, the skill is greatly reduced, especially in the subpolar region. In the stable dynamical system determined by LIM, skill of annual average SST anomalies arises from four damped eigenmodes. The four eigenmodes are shown to be relevant in particular for the optimal growth events of SST variance, with a pattern reminiscent of the low-frequency mode of variability, and in general for the predictability and variability of Atlantic SSTs on interannual time scales. LIM might serve as a useful benchmark for interannual and decadal forecasts of SST anomalies that are based on numerical models.

Corresponding author address: Laure Zanna, Atmospheric, Oceanic and Planetary Physics, Dept. of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom. E-mail: zanna@atm.ox.ac.uk
Save