A Method for Estimating Potential Seasonal Predictability: Analysis of Covariance

Xia Feng Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia

Search for other papers by Xia Feng in
Current site
Google Scholar
PubMed
Close
,
Timothy DelSole Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia, and Center for Ocean-Land-Atmosphere Studies, Calverton, Maryland

Search for other papers by Timothy DelSole in
Current site
Google Scholar
PubMed
Close
, and
Paul Houser Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia

Search for other papers by Paul Houser in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper proposes a new method for assessing potential predictability of seasonal means using a single realization of daily time series. Potential predictability is defined as variability in seasonal means that exceeds the variability due to weather stochastic processes. The proposed method is based on analysis of covariance and accounts for autocorrelation in daily time series and uncertainties in statistical parameters. The method is applied to reanalyzed daily surface air temperature and detects significant potential predictability over the oceans and equatorial land areas. Potential predictability is weaker and varies significantly with season over extratropical land areas, with the fraction of potentially predictable variance rarely exceeding 60%. The proposed method also produces an estimate of the potentially predictable component of seasonal means, which can be used to investigate the relation between potential predictability and possible boundary forcings. The results are generally consistent with previous studies, although a more detailed study will be made in a future paper.

Corresponding author address: Xia Feng, Department of Geography and Geoinformation Science, George Mason University, 4400 University Drive, MS 6C3, Fairfax, VA 22030. E-mail: xfeng@gmu.edu

Abstract

This paper proposes a new method for assessing potential predictability of seasonal means using a single realization of daily time series. Potential predictability is defined as variability in seasonal means that exceeds the variability due to weather stochastic processes. The proposed method is based on analysis of covariance and accounts for autocorrelation in daily time series and uncertainties in statistical parameters. The method is applied to reanalyzed daily surface air temperature and detects significant potential predictability over the oceans and equatorial land areas. Potential predictability is weaker and varies significantly with season over extratropical land areas, with the fraction of potentially predictable variance rarely exceeding 60%. The proposed method also produces an estimate of the potentially predictable component of seasonal means, which can be used to investigate the relation between potential predictability and possible boundary forcings. The results are generally consistent with previous studies, although a more detailed study will be made in a future paper.

Corresponding author address: Xia Feng, Department of Geography and Geoinformation Science, George Mason University, 4400 University Drive, MS 6C3, Fairfax, VA 22030. E-mail: xfeng@gmu.edu
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723.

  • Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and T. M. Smith, 1996: Specification and prediction of global surface temperature and precipitation from global SST using CCA. J. Climate, 9, 26602697.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., S. Li, S. J. Mason, D. G. Dewitt, L. Goddard, and X. Gong, 2010: Verification of the first 11 years of IRI’s seasonal climate forecasts. J. Appl. Meteor. Climatol., 49, 493520.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., and N. Díaz, 2011: Land-atmosphere coupling in El Niño influence over South America. Atmos. Sci. Lett., 12, 351355.

  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250.

    • Search Google Scholar
    • Export Citation
  • Box, G. E. P., G. M. Jenkins, and G. C. Reinsel, 2008: Time Series Analysis: Forecasting and Control. 4th ed. Wiley, 746 pp.

  • Brockwell, P. J., and R. A. Davis, 1961: Time Series Analysis: Theory and Methods. 2nd ed. Springer Verlag, 577 pp.

  • Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global Planet. Change, 68, 149163.

  • Chervin, R. M., 1986: Interannual variability and seasonal climate predictability. J. Atmos. Sci., 43, 233251.

  • Compo, G. P., and P. D. Sardeshmukh, 2004: Storm-track predictability on seasonal and decadal scales. J. Climate, 17, 37013720.

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623.

    • Search Google Scholar
    • Export Citation
  • De Haan, L. L., and M. Kanamitsu, 2008: Increase in near-surface temperature simulation skill due to predictive soil moisture in a numerical seasonal simulation under observed SST forcing. J. Hydrometeor., 9, 4860.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Climate, 24, 909926.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2005: The land surface contribution to the potential predictability of boreal summer season climate. J. Hydrometeor., 6, 618632.

    • Search Google Scholar
    • Export Citation
  • Dix, M. R., and B. G. Hunt, 1995: Chaotic influences and the problem of deterministic seasonal predictions. Int. J. Climatol., 15, 729752.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. M. Van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

    • Search Google Scholar
    • Export Citation
  • Feng, X., T. DelSole, and P. Houser, 2011: Bootstrap estimated seasonal potential predictability of global temperature and precipitation. Geophys. Res. Lett., 38, L07702, doi:10.1029/2010GL046511.

    • Search Google Scholar
    • Export Citation
  • Graybill, F. A., 1961: An Introduction to Linear Statistical Models. McGraw-Hill, 463 pp.

  • Gutzler, D. S., and J. W. Preston, 1997: Evidence for a relationship between spring snow cover in North American and summer rainfall in New Mexico. Geophys. Res. Lett., 24, 22072210.

    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593.

    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea ice extent in the Sea of Okhotsk. J. Climate, 12, 33473358.

    • Search Google Scholar
    • Export Citation
  • Hurvich, C. M., and C. L. Tsai, 1989: Regression and time series model selection in small samples. Biometrika, 76, 297307.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Katz, R. W., 1981: On some criteria for estimating the order of a Markov chain. Technometrics, 23, 243249.

  • Kim, J.-E., and S.-Y. Hong, 2007: Impact of soil moisture anomalies on summer rainfall over East Asia: A regional climate model study. J. Climate, 20, 57325743.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19, 16241651.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipiatation at seasonal–interannual timescales. J. Hydrometeor., 1, 2626.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and prediction. Science, 305, 11381140.

  • Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc., 76, 335345.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, P. Peng, M. P. Hoerling, and L. Goddard, 2000: Changes in the spread of the variability of the seasonal mean atmospheric states associated with ENSO. J. Climate, 13, 31393151.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, doi:10.1029/2010GL045022.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1985: Modeling the seasonal dependence of the atmospheric response to observed El Niño 1962–76. Mon. Wea. Rev., 113, 19701996.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. J. Schweiger, and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, doi:10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Ljung, G. M., and G. E. P. Box, 1978: On a measure of lack of fit in time series models. Biometrika, 65, 297303.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E. N., 1973: Predictability and periodicity: A review and extension. Proc. Third Conf. on Probability and Statistics in Atmospheric Science, Boulder, CO, Amer. Meteor. Soc., 1–4.

  • Lütkepohl, H., 1985: Comparison of criteria for estimating the order of a vector autoregressive process. J. Time Ser. Anal., 6, 3552.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of natural varaibility of time-averaged seal level pressure. Mon. Wea. Rev., 104, 942952.

  • Madden, R. A., and D. J. Shea, 1978: Estimates of natural varaibility of time-averaged temperatures over the United States. Mon. Wea. Rev., 104, 942952.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and J. W. Kidson, 1997: The potential long-range predictability of temperature over New Zealand. Int. J. Climatol., 17, 483495.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., D. J. Shea, R. W. Katz, and J. W. Kidson, 1999: The potential long-range predictability of precipitation over New Zealand. Int. J. Climatol., 19, 405421.

    • Search Google Scholar
    • Export Citation
  • Mardia, K. V., J. T. Kent, and J. M. Bibby, 1979: Multivariate Analysis. Academy Press, 518 pp.

  • Meehl, G. A., and Coauthors, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 25972616.

    • Search Google Scholar
    • Export Citation
  • Narapusetty, B., T. DelSole, and M. K. Tippett, 2009: Optimal estimation of the climatological mean. J. Climate, 22, 48454859.

  • Nicholls, N., 1981: Air–sea interaction and the possibility of long- range weather prediction in the Indonesian Archipelago. Mon. Wea. Rev., 109, 24352443.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. L. T. Anderson, 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120, 755793.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872.

    • Search Google Scholar
    • Export Citation
  • Peng, P., and A. Kumar, 2005: A large ensemble analysis of the influence of tropical SSTs on seasonal atmospheric variability. J. Climate, 18, 10681085.

    • Search Google Scholar
    • Export Citation
  • Phelps, M. W., A. Kumar, and J. J. O’Brien, 2004: Potential predictability in the NCEP CPC dynamical seasonal forecast system. J. Climate, 17, 37753785.

    • Search Google Scholar
    • Export Citation
  • Quan, X. W., P. J. Webster, A. M. Moore, and H. R. Chang, 2004: Seasonality in SST-forced atmospheric short-term climate predictability. J. Climate, 17, 30903108.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., and J. M. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 20712076.

    • Search Google Scholar
    • Export Citation
  • Rice, J. A., 1995: Mathematical Statistics and Data Analysis. Duxbury Press, 650 pp.

  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modeling. Quart. J. Roy. Meteor. Soc., 121, 669704.

    • Search Google Scholar
    • Export Citation
  • Rowell, R., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109120.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13, 42684286.

  • Scheffe, H., 1959: The Analysis of Variance. John Wiley and Sons, 477 pp.

  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464.

  • Seager, R., N. Naik, F. M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296.

    • Search Google Scholar
    • Export Citation
  • Seber, G. A. F., and A. J. Lee, 2003: Linear Regression Analysis. 2nd ed. John Wiley and Sons, 557 pp.

  • Shongwe, M. E., C. A. T. Ferro, C. A. S. Coelho, and G. J. V. Oldenborgh, 2007: Predictability of cold spring seasons in Europe. Mon. Wea. Rev., 135, 41854201.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1981: Dynamical predictability of monthly means. J. Atmos. Sci., 38, 25472572.

  • Shukla, J., 1983: Comments on “Natural variability and predictability.” Mon. Wea. Rev., 111, 581585.

  • Shukla, J., and D. S. Gutzler, 1983: Interannual variability and predictability of 500-mb geopotential heights over the Northern Hemisphere. Mon. Wea. Rev., 111, 12731279.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81, 25932606.

  • Simmons, A., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115, doi:10.1029/2004JD005306.

    • Search Google Scholar
    • Export Citation
  • Singh, S. V., and R. H. Kripalani, 1986: Potential predictability of lower-tropospheric monsoon circulation and rainfall over India. Mon. Wea. Rev., 114, 758763.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Stern, W., and K. Miyakoda, 1995: The feasibility of seasonal forecasts speculated from multiple GCM simulations. J. Climate, 8, 10711085.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST in the North Atlantic. J. Climate, 22, 14691481.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984a: Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon. Wea. Rev., 112, 23592368.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984b: Some effects of finite sample size and persistence on meteorological statistics. Part II: Potential predictability. Mon. Wea. Rev., 112, 23692379.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1985: Potential predictability of geopotential heights over the Southern Hemisphere. Mon. Wea. Rev., 113, 5464.

  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • von Storch, J.-S., 2008: Toward climate prediction: Interannual potential predictability due to an increase in CO2 concentration as diagnosed from an ensemble of AO GCM integrations. J. Climate, 21, 46074628.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmosphere Sciences. 2nd ed. Academy Press, 627 pp.

  • Wu, R., and B. P. Kirtman, 2006: Changes in spread and predictability associated with ENSO in an ensemble coupled GCM. J. Climate, 19, 43784396.

    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2010: Changes in the relationship between Northeast China summer temperature and ENSO. J. Geophys. Res., 115, D21107, doi:10.1029/2010JD014422.

    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116, D16116, doi:10.1029/2011JD015779.

    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, and K.-M. Lau, 2004: Potential predictability of U.S. summer climate with “perfect” soil moisture. J. Hydrometeor., 5, 883895.

    • Search Google Scholar
    • Export Citation
  • Yang, X. S., and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns between models and observations. J. Climate, 25, 425446.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 33093322.

    • Search Google Scholar
    • Export Citation
  • Zheng, X., H. Nakamura, and J. A. Renwick, 2000: Potential predictability of seasonal means based on monthly time series of meteorological variables. J. Climate, 13, 25912604.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1987: A potential predictability study conducted with an atmospheric general circulation model. Mon. Wea. Rev., 115, 29572974.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1996: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn., 12, 825848.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 520 263 41
PDF Downloads 172 30 2