The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin, Australia)

Peter T. May Centre for Australian Weather and Climate Research: A partnership between the Bureau of Meteorology and CSIRO, Melbourne, Victoria, Australia

Search for other papers by Peter T. May in
Current site
Google Scholar
PubMed
Close
,
Charles N. Long Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Charles N. Long in
Current site
Google Scholar
PubMed
Close
, and
Alain Protat Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime—this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

Corresponding author address: Peter T. May, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: p.may@bom.gov.au

Abstract

The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime—this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

Corresponding author address: Peter T. May, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne VIC 3001, Australia. E-mail: p.may@bom.gov.au
Save
  • Bringi, V. N., G.-J. Huang, V. Chandrasekar, and T. D. Keenan, 2001: An areal rainfall estimator using differential propagation phase: Evaluation using a C-band radar and a dense gauge network in the tropics. J. Atmos. Oceanic Technol., 18, 18101818.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G.-J. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–1992. J. Climate, 9, 8596.

  • Drosdowsky, W., and G. J. Holland, 1987: North Australian cloud lines. Mon. Wea. Rev., 115, 26452659.

  • Holland, G. J., 1986: Interannual variability of the Australian summer monsoon at Darwin: 1952–82. Mon. Wea. Rev., 114, 594604.

  • Hume, T., 2007: Radiation Dry bias in the TWP-ICE radiosonde soundings. Proc. 17th ARM Science Team Meeting, Monterey, CA, U.S. Dept. of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf17/poster/P00011.pdf?id=75.]

  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical Northern Australia. Quart. J. Roy. Meteor. Soc., 118, 283326.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and S. A. Rutledge, 1993: Mesoscale characteristics of monsoonal convection and associated stratiform precipitation. Mon. Wea. Rev., 121, 352374.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., J. McBride, G. Holland, N. Davidson, and B. Gunn, 1989: Diurnal variations during the Australian Monsoon Experiment (AMEX) Phase II. Mon. Wea. Rev., 117, 25352553.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol., 15, 871886.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and Coauthors, 2000: The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81, 24332455.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., 2005: On the estimation of clear-sky upwelling shortwave and longwave. U.S. Department of Energy, DOE/SC-ARM-0503, 9 pp.

  • Long, C. N., 2008: Estimation of upwelling SW and LW for Cape Don and Pirlangimpi using Darwin data. ARM Tech. Data Rep., 15 pp. [Available online at http://iop.archive.arm.gov/arm-iop-file/2006/twp/twp-ice/long-sfcflux/Cape_Don/TWP-ICE_EstUp.pdf.]

  • Long, C. N., and T. P. Ackerman, 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res., 105 (D12), 15 60915 626.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and D. D. Turner, 2008: A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements. J. Geophys. Res., 113, D18206, doi:10.1029/2008JD009936.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., T. P. Ackerman, K. L. Gaustad, and J. N. S. Cole, 2006: Estimation of fractional sky cover from broadband shortwave radiometer measurements. J. Geophys. Res., 111, D11204, doi:10.1029/2005JD006475.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. I: Horizontal structure. Quart. J. Roy. Meteor. Soc., 118, 927963.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844.

    • Search Google Scholar
    • Export Citation
  • Mather, J., T. Ackerman, W. Clements, F. Barnes, M. Ivey, L. Hatfield, and R. Reynolds, 1998: An atmospheric radiation and cloud station in the tropical western Pacific. Bull. Amer. Meteor. Soc., 79, 627642.

    • Search Google Scholar
    • Export Citation
  • May, P. T., 1999: Thermodynamic and vertical velocity structure of two gust fronts observed with a wind profiler/RASS during MCTEX. Mon. Wea. Rev., 127, 17961807.

    • Search Google Scholar
    • Export Citation
  • May, P. T., 2011: Mesoscale aspects of the Australian monsoon. The Global Monsoon System: Research and Forecast, 2nd ed. C. P. Chang et al., Eds., World Scientific, 223–238.

  • May, P. T., and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, Northern Australia). Mon. Wea. Rev., 135, 8292.

    • Search Google Scholar
    • Export Citation
  • May, P. T., T. D. Keenan, D. S. Zrnić, L. D. Carey, and S. A. Rutledge, 1999: Polarimetric measurements of rain at a 5-cm wavelength. J. Appl. Meteor., 38, 750765.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea breeze thunderstorms. Mon. Wea. Rev., 130, 22282239.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and W. M. Frank, 1999: Relationships between stability and monsoon convection. J. Atmos. Sci., 56, 2436.

  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455.

    • Search Google Scholar
    • Export Citation
  • Ohsawa, T., H. Ueda, T. Hayashi, A. Watanabe, and J. Matsumoto, 2001: Diurnal variations of convective activity and rainfall in tropical Asia. J. Meteor. Soc. Japan, 79, 333352.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2009: Assessment of CloudSat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoe, A. Plana-Fattori, P. T. May, and E. O’Connor, 2010: The statistical properties of tropical ice clouds generated by the West African and Australian monsoons from ground-based radar–lidar observations. Quart. J. Roy. Meteor. Soc., 136 (S1), 345363, doi:10.1002/qj.490.

    • Search Google Scholar
    • Export Citation
  • Schafer, R., S. A. Avery, P. T. May, D. Rajopadhyaya, and C. Williams, 2002: Estimation of rainfall drop size distributions from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Oceanic Technol., 19, 864874.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610.

  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus mergers in the maritime continent. Meteor. Atmos. Phys., 51, 7379.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., K. I. Hodges, and G. J. Robinson, 2004: Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Quart. J. Roy. Meteor. Soc., 130, 14491467.

    • Search Google Scholar
    • Export Citation
  • Stoffel, T., 2005: Solar Infrared Radiation Station (SIRS) handbook. Atmospheric Radiation Measurement Climate Research Facility Tech. Rep. ARM TR-025, 29 pp. [Available online at http://www.arm.gov/publications/tech_reports/handbooks/sirs_handbook.pdf.]

  • Wilson, J. W., R. E. Carbone, J. D. Tuttle, and T. D. Keenan, 2001: Tropical island convection in the absence of significant topography. Part II: Nowcasting storm evolution. Mon. Wea. Rev., 129, 16371655.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1027 510 164
PDF Downloads 399 114 11