Tropical Cold-Point Tropopause: Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC GPS Radio Occultation Measurements

Joowan Kim Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Joowan Kim in
Current site
Google Scholar
PubMed
Close
and
Seok-Woo Son Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The finescale structure of the tropical cold-point tropopause (CPT) is examined using high-resolution temperature profiles derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) global positioning system (GPS) radio occultation measurements for 4 yr from September 2006 to August 2010. The climatology, seasonal cycle, and intraseasonal variability are analyzed for three CPT properties: temperature (T-CPT), pressure (P-CPT), and sharpness (S-CPT). Their relationships with tropospheric and stratospheric processes are also discussed.

The climatological P-CPT is largely homogeneous in the deep tropics, whereas T-CPT and S-CPT exhibit local minima and maxima, respectively, at the equator in the vicinity of deep convection regions. All three CPT properties, however, show coherent seasonal cycle in the tropics; the CPT is colder, higher (lower in pressure), and sharper during boreal winter than during boreal summer. This seasonality is consistent with the seasonal cycle of tropical upwelling, which is largely driven by stratospheric and near-tropopause processes, although the amplitude of the seasonal cycle of T-CPT and S-CPT is modulated by tropospheric circulations. On intraseasonal time scales, P-CPT and T-CPT exhibit homogeneous variability in the deep tropics, whereas S-CPT shows pronounced local variability and seasonality. The wavenumber–frequency spectra reveal that intraseasonal variability of CPT properties is primarily controlled by Kelvin waves, with a nonnegligible contribution by Madden–Julian oscillation convection. The Kelvin waves, which are excited by deep convection but often propagate along the equator freely, explain the homogeneous P-CPT and T-CPT variabilities. On the other hand, the vertically tilted dipole of temperature anomalies, which is associated with convectively coupled equatorial waves, determines the local structure and seasonality of S-CPT variability.

Corresponding author address: Joowan Kim, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal QC H3A 2K6, Canada. E-mail: joowan.kim@mail.mcgill.ca

Abstract

The finescale structure of the tropical cold-point tropopause (CPT) is examined using high-resolution temperature profiles derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) global positioning system (GPS) radio occultation measurements for 4 yr from September 2006 to August 2010. The climatology, seasonal cycle, and intraseasonal variability are analyzed for three CPT properties: temperature (T-CPT), pressure (P-CPT), and sharpness (S-CPT). Their relationships with tropospheric and stratospheric processes are also discussed.

The climatological P-CPT is largely homogeneous in the deep tropics, whereas T-CPT and S-CPT exhibit local minima and maxima, respectively, at the equator in the vicinity of deep convection regions. All three CPT properties, however, show coherent seasonal cycle in the tropics; the CPT is colder, higher (lower in pressure), and sharper during boreal winter than during boreal summer. This seasonality is consistent with the seasonal cycle of tropical upwelling, which is largely driven by stratospheric and near-tropopause processes, although the amplitude of the seasonal cycle of T-CPT and S-CPT is modulated by tropospheric circulations. On intraseasonal time scales, P-CPT and T-CPT exhibit homogeneous variability in the deep tropics, whereas S-CPT shows pronounced local variability and seasonality. The wavenumber–frequency spectra reveal that intraseasonal variability of CPT properties is primarily controlled by Kelvin waves, with a nonnegligible contribution by Madden–Julian oscillation convection. The Kelvin waves, which are excited by deep convection but often propagate along the equator freely, explain the homogeneous P-CPT and T-CPT variabilities. On the other hand, the vertically tilted dipole of temperature anomalies, which is associated with convectively coupled equatorial waves, determines the local structure and seasonality of S-CPT variability.

Corresponding author address: Joowan Kim, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal QC H3A 2K6, Canada. E-mail: joowan.kim@mail.mcgill.ca
Save
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333.

  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res., 111, D04104, doi:10.1029/2005JD006301.

  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Boehm, M. T., and S. Lee, 2003: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer–Dobson circulation. J. Atmos. Sci., 60, 247261.

    • Search Google Scholar
    • Export Citation
  • Brewer, A., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363.

    • Search Google Scholar
    • Export Citation
  • de F. Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513.

    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368.

  • Eguchi, N., and M. Shiotani, 2004: Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere. J. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, doi:10.1029/2005JD006019.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., 112, D23104, doi:10.1029/2007JD008945.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., W. J. Randel, F. Wu, and S. T. Massie, 2002a: Transport of water vapor in the tropical tropopause layer. Geophys. Res. Lett., 29, 1009, doi:10.1029/2001GL013818.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., M. L. Salby, and F. Sassi, 2002b: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, 4080, doi:10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2009: The tropical tropopause layer 1960–2100. Atmos. Chem. Phys., 9, 16211637.

  • Gettelman, A., and Coauthors, 2010: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. J. Geophys. Res., 115, D00M08, doi:10.1029/2009JD013638.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, M. E., and K. B. Lauritsen, 2004: Analysis of wave fields by Fourier integral operators and their application for radio occultations. Radio Sci., 39, RS4010, doi:10.1029/2003RS002971.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., D. W. J. Thompson, and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 22752292.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., M. McIntyre, T. Shepherd, C. Marks, and K. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651679.

    • Search Google Scholar
    • Export Citation
  • He, W., S.-P. Ho, H. Chen, X. Zhou, D. Hunt, and Y.-H. Kuo, 2009: Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett., 36, L17807, doi:10.1029/2009GL038712.

    • Search Google Scholar
    • Export Citation
  • Highwood, E., and B. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. S., M. S. Lohmann, H.-H. Benzon, and A. S. Nielsen, 2003: Full Spectrum Inversion of radio occultation signals. Radio Sci., 38, 1040, doi:10.1029/2002RS002763.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, M., and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63, 14101419.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G., K. Straub, G. Reid, and K. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611983.

    • Search Google Scholar
    • Export Citation
  • Kishore, P., S. P. Namboothiri, K. Igarashi, J. H. Jiang, C. O. Ao, and L. J. Romans, 2006: Climatological characteristics of the tropopause parameters derived from GPS/CHAMP and GPS/SAC-C measurements. J. Geophys. Res., 111, D20110, doi:10.1029/2005JD006827.

    • Search Google Scholar
    • Export Citation
  • Kishore, P., S. P. Namboothiri, J. H. Jiang, V. Sivakumar, and K. Igarashi, 2009: Global temperature estimates in the troposphere and stratosphere: A validation study of COSMIC/FORMOSAT-3 measurements. Atmos. Chem. Phys., 9, 897908, doi:10.5194/acp-9-897-2009.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2004: Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61, 29192927.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102D, 23 42923 465.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363.

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101D, 39894006.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., T. J. Dunkerton, M. E. Mclntyre, E. A. Ray, P. H. Haynes, and J. M. Russell III, 1998: Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res., 103D, 86518666.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., H. L. Clark, T. J. Dunkerton, R. S. Harwood, and H. C. Pumphrey, 2000: Intraseasonal variations of water vapor in the tropical upper troposphere and tropopause region. J. Geophys. Res., 105D, 17 45717 470.

    • Search Google Scholar
    • Export Citation
  • Nishida, M., A. Shimizu, and T. Tsuda, 2000: Seasonal and longitudinal variations in the tropical tropopause observed with the GPS occultation technique (GPS/MET). J. Meteor. Soc. Japan, 78, 691700.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, D03102, doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and D. J. Gaffen, 2000: Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res., 105D, 15 50915 523.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and W. R. Rios, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024, doi:10.1029/2002JD002595.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, S. J. Oltmans, K. Rosenlof, and G. E. Nedoluha, 2004: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61, 21332148.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595.

  • Reid, G. C., and K. S. Gage, 1981: On the annual variation in height of the tropical tropopause. J. Atmos. Sci., 38, 19281938.

  • Schmidt, T., J. Wickert, G. Beyerle, and C. Reigber, 2004: Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J. Geophys. Res., 109, D13105, doi:10.1029/2004JD004566.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SAC-C: Global monitoring of thermal tropopause parameters. Atmos. Chem. Phys., 5, 14731488, doi:10.5194/acp-5-1473-2005.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., R. Ross, J. K. Angell, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106D, 78577878.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2002: Issues in stratosphere-troposphere coupling. J. Meteor. Soc. Japan, 80, 769792, doi:10.2151/jmsj.80.769.

  • Sherwood, S. C., T. Horinouchi, and H. A. Zeleznik, 2003: Convective impact on temperatures observed near the tropical tropopause. J. Atmos. Sci., 60, 18471856.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and S. Lee, 2007: Intraseasonal variability of the zonal-mean tropical tropopause height. J. Atmos. Sci., 64, 26952706.

  • Son, S.-W., N. F. Tandon, and L. M. Polvani, 2011: The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res., 116, D20113, doi:10.1029/2011JD016030.

    • Search Google Scholar
    • Export Citation
  • Suzuki, J., and M. Shiotani, 2008: Space-time variability of equatorial Kelvin waves and intraseasonal oscillations around the tropical tropopause. J. Geophys. Res., 113, D16110, doi:10.1029/2007JD009456.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169169.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and J. R. Holton, 2002: Intraseasonal variations of tropical cold-point tropopause temperatures. J. Climate, 15, 14601473.

  • Zhou, X., M. A. Geller, and M. Zhang, 2001a: Cooling trend of the tropical cold point tropopause temperatures and its implications. J. Geophys. Res., 106D, 15111522.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., M. A. Geller, and M. Zhang, 2001b: Tropical cold point tropopause characteristics derived from ECMWF reanalyses and soundings. J. Climate, 14, 18231838.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1732 586 144
PDF Downloads 1186 193 13