Covariability of Surface Wind and Stress Responses to Sea Surface Temperature Fronts

Larry W. O’Neill College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Larry W. O’Neill in
Current site
Google Scholar
PubMed
Close
,
Dudley B. Chelton College of Earth, Ocean, and Atmospheric Sciences, and Cooperative Institute for Oceanographic Satellite Studies, Oregon State University, Corvallis, Oregon

Search for other papers by Dudley B. Chelton in
Current site
Google Scholar
PubMed
Close
, and
Steven K. Esbensen College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Steven K. Esbensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The responses of surface wind and wind stress to spatial variations of sea surface temperature (SST) are investigated using satellite observations of the surface wind from the Quick Scatterometer (QuikSCAT) and SST from the Advanced Microwave Scanning Radiometer on the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) Aqua satellite. This analysis considers the 7-yr period June 2002–May 2009 during which both instruments were operating. Attention is focused in the Kuroshio, North and South Atlantic, and Agulhas Return Current regions. Since scatterometer wind stresses are computed solely as a nonlinear function of the scatterometer-derived 10-m equivalent neutral wind speed (ENW), qualitatively similar responses of the stress and ENW to SST are expected. However, the responses are found to be more complicated on the oceanic mesoscale. First, the stress and ENW are both approximately linearly related to SST, despite a nonlinear relationship between them. Second, the stress response to SST is 2 to 5 times stronger during winter compared to summer, while the ENW response to SST exhibits relatively little seasonal variability. Finally, the stress response to SST can be strong in regions where the ENW response is weak and vice versa.

A straightforward algebraic manipulation shows that the stress perturbations are directly proportional to the ENW perturbations multiplied by a nonlinear function of the ambient large-scale ENW. This proportionality explains why both the stress and ENW depend linearly on the mesoscale SST perturbations, while the dependence of the stress perturbations on the ambient large-scale ENW explains both the seasonal pulsing and the geographic variability of the stress response to SST compared with the less variable ENW response.

Corresponding author address: Larry W. O’Neill, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 COAS Administration Building, Corvallis, OR 97331. E-mail: loneill@coas.oregonstate.edu

Abstract

The responses of surface wind and wind stress to spatial variations of sea surface temperature (SST) are investigated using satellite observations of the surface wind from the Quick Scatterometer (QuikSCAT) and SST from the Advanced Microwave Scanning Radiometer on the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) Aqua satellite. This analysis considers the 7-yr period June 2002–May 2009 during which both instruments were operating. Attention is focused in the Kuroshio, North and South Atlantic, and Agulhas Return Current regions. Since scatterometer wind stresses are computed solely as a nonlinear function of the scatterometer-derived 10-m equivalent neutral wind speed (ENW), qualitatively similar responses of the stress and ENW to SST are expected. However, the responses are found to be more complicated on the oceanic mesoscale. First, the stress and ENW are both approximately linearly related to SST, despite a nonlinear relationship between them. Second, the stress response to SST is 2 to 5 times stronger during winter compared to summer, while the ENW response to SST exhibits relatively little seasonal variability. Finally, the stress response to SST can be strong in regions where the ENW response is weak and vice versa.

A straightforward algebraic manipulation shows that the stress perturbations are directly proportional to the ENW perturbations multiplied by a nonlinear function of the ambient large-scale ENW. This proportionality explains why both the stress and ENW depend linearly on the mesoscale SST perturbations, while the dependence of the stress perturbations on the ambient large-scale ENW explains both the seasonal pulsing and the geographic variability of the stress response to SST compared with the less variable ENW response.

Corresponding author address: Larry W. O’Neill, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 COAS Administration Building, Corvallis, OR 97331. E-mail: loneill@coas.oregonstate.edu
Save
  • Anderson, S. P., 2001: On the atmospheric boundary layer over the equatorial front. J. Climate, 14, 16881695.

  • Bendat, J. S., and A. G. Piersol, 1986: Random Data Analysis and Measurement Procedures. 2nd ed. Wiley & Sons, 566 pp.

  • Bond, N. A., 1992: Observations of planetary boundary layer structure in the eastern equatorial Pacific. J. Climate, 5, 699706.

  • Bourassa, M. A., D. G. Vincent, and W. L. Wood, 1999: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci., 56, 11231139.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., D. M. Legler, J. J. O’Brien, and S. R. Smith, 2003: SeaWinds validation with research vessels. J. Geophys. Res., 108, 3019, doi:10.1029/2001JC001028.

    • Search Google Scholar
    • Export Citation
  • Bourras, D., G. Reverdin, H. Giordani, and G. Caniaux, 2004: Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J. Geophys. Res., 109, D18114, doi:10.1029/2004JD004799.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 2005: The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific. J. Climate, 18, 530550.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 2003: The accuracies of smoothed sea surface height fields constructed from tandem altimeter datasets. J. Atmos. Oceanic Technol., 20, 12761302.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. H. Freilich, 2005: Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133, 409429.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanogr. Mag., 4, 5269.

  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., and S. J. Devlin, 1988: Locally weighted regression: An approach to regression analysis by local fitting. J. Amer. Stat. Assoc., 83, 596610.

    • Search Google Scholar
    • Export Citation
  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13.56 mc/s. Nature, 175, 681682.

  • Cronin, M. F., S.-P. Xie, and H. Hashizume, 2003: Barometric pressure variations associated with eastern Pacific tropical instability waves. J. Climate, 16, 30503057.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61, 18371858.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., H. C. Graber, and M. J. Caruso, 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Oceanic Atmos. Technol., 19, 20492062.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in midlatitudes. Rev. Geophys., 23, 357390.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., and Coauthors, 1991: Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96 (C5), 85938609.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929.

  • Geernaert, G., 1990: Bulk parameterizations for the wind stress and heat flux. Surface Waves and Fluxes: Theory and Remote Sensing, Vol. 1, G. Geernaert and W. Plant, Eds., Kluwer Academic, 91–172.

  • Haack, T., D. Chelton, J. Pullen, J. D. Doyle, and M. Schlax, 2008: Summertime influence of SST on surface wind stress off the U.S. west coast from the U.S. Navy COAMPS model. J. Phys. Oceanogr., 38, 24142437.

    • Search Google Scholar
    • Export Citation
  • Hashizume, H., S.-P. Xie, W. T. Liu, and K. Takeuchi, 2001: Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res., 106 (D10), 10 17310 185.

    • Search Google Scholar
    • Export Citation
  • Hashizume, H., S.-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W. T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Climate, 15, 33793393.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific. J. Climate, 2, 15001506.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. C. M., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 40664082.

    • Search Google Scholar
    • Export Citation
  • Jin, X., C. Dong, J. Kurian, J. C. McWilliams, D. B. Chelton, and Z. Li, 2009: Wind–SST interaction in coastal upwelling: Oceanic simulation with empirical coupling. J. Phys. Oceanogr., 39, 29572970.

    • Search Google Scholar
    • Export Citation
  • Jones, W. L., and L. C. Schroeder, 1978: Radar backscatter from the ocean: Dependence on surface friction velocity. Bound.-Layer Meteor., 13, 133149.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 1994: Thermal front within the marine atmospheric boundary layer over the Agulhas Current south of Africa: Composite aircraft observations. J. Geophys. Res., 99 (C2), 32973304.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and N. Walker, 1988: Marine boundary layer modification across the edge of the Agulhas Current. J. Geophys. Res., 93 (C1), 647654.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., S. A. Grodsky, V. A. Dulov, and V. V. Malinovsky, 1996: Observations of atmospheric boundary layer evolution above the Gulf Stream frontal zone. Bound.-Layer Meteor., 79, 5182.

    • Search Google Scholar
    • Export Citation
  • Kwon, B. H., B. Bénech, D. Lambert, P. Durand, A. Druilhet, H. Giordani, and S. Planton, 1998: Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment. J. Geophys. Res., 103 (C11), 25 15925 180.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. Morzel, and G. B. Crawford, 1995: Accounting for surface wave distortion of the marine wind profile in low-level Ocean Storms wind measurements. J. Phys. Oceanogr., 25, 29592971.

    • Search Google Scholar
    • Export Citation
  • Li, F., W. Large, W. Shaw, E. J. Walsh, and K. Davidson, 1989: Ocean radar backscatter relationship with near-surface winds: A case study during FASINEX. J. Phys. Oceanogr., 19, 342353.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and W. Tang, 1996: Equivalent neutral wind. JPL Publication 96–17, 16 pp.

  • Liu, W. T., and X. Xie, 2008: Ocean–atmosphere momentum coupling in the Kuroshio Extension observed from space. J. Oceanogr., 64, 631637.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., X. Xie, P. S. Polito, S.-P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability waves observed by QuikSCAT and Tropical Rain Measuring Mission. Geophys. Res. Lett., 27, 25452548.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., X. Xie, and P. Niiler, 2007: Ocean–atmosphere interaction over Agulhas Extension meanders. J. Climate, 20, 57845797.

  • Mahrt, L., D. Vickers, and E. Moore, 2004: Flow adjustments across sea surface temperature changes. Bound.-Layer Meteor., 111, 553564.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. B. Chelton, 2006: An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models. J. Climate, 19, 27432762.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Mey, R. D., N. D. Walker, and M. R. Jury, 1990: Surface heat fluxes and marine boundary layer modification in the Agulhas Retroflection region. J. Geophys. Res., 95 (C9), 15 99716 015.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., W. G. Large, W. R. Holland, and J. C. McWilliams, 1996: The general circulation responses of high-resolution North Atlantic Ocean models to synthetic scatterometer winds. J. Phys. Oceanogr., 26, 17471768.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209.

    • Search Google Scholar
    • Export Citation
  • Mitsuyasu, H., and T. Honda, 1974: The high frequency spectrum of wind-generated waves. J. Oceanogr. Soc. Japan, 30, 185198.

  • Nonaka, M., and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean–to–atmosphere feedback. J. Climate, 16, 14041413.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., 2012: Wind speed and stability effects on the coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25, 15441569.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations on the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST perturbations over the Agulhas Return Current. J. Climate, 18, 27062723.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010a: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., S. K. Esbensen, N. Thum, R. M. Samelson, and D. B. Chelton, 2010b: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., S.-P. Xie, A. Numaguti, and Y. Tanimoto, 2001: Tropical Atlantic air–sea interaction and its influence on the NAO. Geophys. Res. Lett., 28, 15071510.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Park, K.-A., and P. C. Cornillon, 2002: Stability-induced modification of sea surface winds over Gulf Stream rings. Geophys. Res. Lett., 29, 2211, doi:10.1029/2001GL014236.

    • Search Google Scholar
    • Export Citation
  • Park, K.-A., P. C. Cornillon, and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111, C03021, doi:10.1029/2005JC003016.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., J. Vialard, K. J. Richards, C. Menkes, and D. Anderson, 2004: Influence of ocean-atmosphere coupling on the properties of tropical instability waves. Geophys. Res. Lett., 34, L16306, doi:10.1029/2004GL019995.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., R. B. Souza, M. S. Dourado, C. A. E. Garcia, M. M. Mata, and M. A. F. Silva-Dias, 2005: Ocean–atmosphere in situ observations at the Brazil–Malvinas confluence region. Geophys. Res. Lett., 32, L22603, doi:10.1029/2005GL023866.

    • Search Google Scholar
    • Export Citation
  • Pickett, M. H., W. Tang, L. K. Rosenfeld, and C. H. Wash, 2003: QuikSCAT satellite comparisons with near-shore buoy wind data off the U.S. West Coast. J. Atmos. Oceanic Technol., 20, 18691879.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and R. A. Stacy, 1973: The elevation, slope, and curvature spectra of a wind roughened sea surface. NASA Contractor Tech. Rep. CR-2247, 126 pp.

  • Polito, P. S., J. P. Ryan, W. T. Liu, and F. P. Chavez, 2001: Oceanic and atmospheric anomalies of tropical instability waves. Geophys. Res. Lett., 28, 22332236.

    • Search Google Scholar
    • Export Citation
  • Portabella, M., and A. Stoffelen, 2009: On scatterometer ocean stress. J. Atmos. Oceanic Technol., 26, 368382.

  • Raymond, D. J., and Coauthors, 2004: EPIC2001 and the coupled ocean–atmosphere system of the tropical east Pacific. Bull. Amer. Meteor. Soc., 85, 13411354.

    • Search Google Scholar
    • Export Citation
  • Rice, S. O., 1951: Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math., 4, 351.

  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., 1989: The marine boundary layer in the vicinity of an ocean front. J. Atmos. Sci., 46, 20442062.

  • Ross, D. B., V. J. Cardone, J. Overland, R. D. McPherson, W. J. Pierson Jr., and T. Yu, 1985: Oceanic surface winds. Adv. Geophys., 27, 101140.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., and J. R. E. Lutjeharms, 2000: Air–sea exchange over an Agulhas eddy at the subtropical convergence. Global Atmos. Ocean Syst., 7, 125150.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., E. D. Skyllingstad, D. B. Chelton, S. K. Esbensen, L. W. O’Neill, and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2007: Mapping high sea winds from space. Bull. Amer. Meteor. Soc., 88, 19651978.

  • Schlax, M. G., and D. B. Chelton, 1992: Frequency domain diagnostics for linear smoothers. J. Amer. Stat. Assoc., 87, 10701081.

  • Schlax, M. G., D. B. Chelton, and M. H. Freilich, 2001: Sampling errors in wind fields constructed from single and tandem scatterometer datasets. J. Atmos. Oceanic Technol., 18, 10141036.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. O. Roads, 2007: The Scripps coupled ocean–atmosphere regional (SCOAR) model, with applications in the eastern Pacific sector. J. Climate, 20, 381402.

    • Search Google Scholar
    • Export Citation
  • Seo, H., R. Murtugudde, M. Jochum, and A. J. Miller, 2008: Modeling of mesoscale coupled ocean-atmosphere interaction and its feedback to ocean in the western Arabian Sea. Ocean Modell., 25 (3–4), 120131, doi:10.1016/j.ocemod.2008.07.003.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., D. Vickers, L. Mahrt, and R. Samelson, 2006: Effects of mesoscale sea surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219237, doi:10.1007/s10546-006-9127-8.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S.-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16, 37223740.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S.-P. Xie, and J. Hafner, 2005a: Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields in the tropical belt. J. Geophys. Res., 110, C02021, doi:10.1029/2004JC002598.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S.-P. Xie, Y. Wang, S. K. Esbensen, and D. Vickers, 2005b: Numerical simulation of boundary layer structure and cross-equatorial flow in the eastern Pacific. J. Atmos. Sci., 62, 18121830.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111, C12006, doi:10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Song, Q., D. B. Chelton, S. K. Esbensen, N. Thum, and L. W. O’Neill, 2009: Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Climate, 22, 146164.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007a: Effect of sea surface temperature–wind stress coupling on baroclinic instability in the ocean. J. Phys. Oceanogr., 37, 10921097.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007b: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 37853801.

    • Search Google Scholar
    • Export Citation
  • Sweet, W. R., R. Fett, J. Kerling, and P. LaViolette, 1981: Air–sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon. Wea. Rev., 109, 10421052.

    • Search Google Scholar
    • Export Citation
  • Thum, N., S. K. Esbensen, D. B. Chelton, and M. J. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15, 33613378.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, and S.-P. Xie, 2005: SST-induced surface wind variations over the Brazil–Malvinas Confluence: Satellite and in situ observations. J. Climate, 18, 34703482.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., S.-P. Xie, and A. S. Fischer, 2004: Ocean–atmosphere covariability in the western Arabian Sea. J. Climate, 17, 12131224.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., J. Uotila, and J. Launiainen, 1998: Air-sea interaction over a thermal front in the Denmark Strait. J. Geophys. Res., 103 (C12), 27 66527 678.

    • Search Google Scholar
    • Export Citation
  • Wai, M., and S. A. Stage, 1989: Dynamical analysis of marine atmospheric boundary layer structure near the Gulf Stream oceanic front. Quart. J. Roy. Meteor. Soc., 115, 2944.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., and H. C. Graber, 1999: Satellite scatterometer studies of ocean surface stress and drag coefficients using a direct model. J. Geophys. Res., 104 (C5), 11 32911 335.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., T. W. Thompson, and R. Legeckis, 1980: Modulation of sea surface radar cross section by surface wind stress: Wind speed and air temperature effects across the Gulf Stream. J. Geophys. Res., 85 (C9), 50325042.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., K. L. Davidson, R. A. Brown, C. A. Friehe, and F. Li, 1994: The relationship between microwave radar cross-section and both wind speed and stress: Model function studies using frontal air-sea interaction experiment data. J. Geophys. Res., 99 (C5), 10 08710 108.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and J. L. Annis, 2003: Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer. J. Climate, 33, 10951107.

    • Search Google Scholar
    • Export Citation
  • Wright, J. W., 1966: Backscattering from capillary waves with application to sea clutter. IEEE Trans. Antennas Propag., 14, 749754.

  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208.

  • Xie, S.-P., M. Ishiwatari, H. Hashizume, and K. Takeuchi, 1998: Coupled ocean–atmosphere waves on the equatorial front. Geophys. Res. Lett., 25, 38633866.

    • Search Google Scholar
    • Export Citation
  • Xie, T., W. Perrie, and W. Chen, 2010: Gulf Stream thermal fronts detected by synthetic aperature radar. Geophys. Res. Lett., 37, L06601, doi:10.1029/2009GL041972.

    • Search Google Scholar
    • Export Citation
  • Xu, H., H. Tokinaga, and S.-P. Xie, 2010: Atmospheric effects of the Kuroshio large meander during 2004/05. J. Climate, 23, 47044715.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., and A. J. Busalacchi, 2009: An empirical model for surface wind stress response to SST forcing induced by tropical instability waves (TIWs) in the eastern equatorial Pacific. Mon. Wea. Rev., 137, 20212046.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 728 341 38
PDF Downloads 541 221 39