Comparison of the Northwestern Pacific Summer Climate Simulated by AMIP II AGCMs

Minghong Zhang Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Minghong Zhang in
Current site
Google Scholar
PubMed
Close
,
Shuanglin Li Nansen-Zhu International Research Centre, and Key Laboratory of Regional Climate-Environment for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Shuanglin Li in
Current site
Google Scholar
PubMed
Close
,
Jian Lu George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Calverton, Maryland

Search for other papers by Jian Lu in
Current site
Google Scholar
PubMed
Close
, and
Renguang Wu Institute of Space and Earth Information Science and Department of Physics, The Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the skills in simulating interannual variability of northwestern Pacific (NWP) summer climate in 12 atmospheric general circulation models (AGCMs) attending the Atmospheric Model Intercomparison Project phase 2 (AMIP II). The models show a wide range of skills, among those version 1 of the Hadley Centre Global Atmosphere Model (HadGAM1) showed the highest fidelity and thus may be a better choice for studying East Asian–NWP summer climate. To understand the possible causes for the difference among the models, five models {HadGAM1; ECHAM5; the Geophysical Fluid Dynamics Laboratory Atmosphere Model, version 2.1 (AM2.1); Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2(hires)]; and the fourth-generation National Center for Atmospheric Research Community Atmosphere Model (CAM3)} that have various skill levels, ranging from the highest to the moderate to the minor, were selected for analyses. The simulated teleconnection of NWP summer climate with sea surface temperatures (SSTs) in the tropical Indian and Pacific Oceans was first compared. HadGAM1 reproduces suppressed (intensified) rainfall during El Niño (La Niña) events and captures well the remote connection with the tropical Indian Ocean, while the other models either underestimate [ECHAM5, AM2.1, MIROC3.2(hires)] or fail to reproduce (CAM3) these teleconnections. The Walker cell and diabatic heating were further compared to shed light on the underlying physical mechanisms for the difference. Consistent with the best performance in simulating interannual rainfall, HadGAM1 exhibits the highest-level skill in capturing the observed climatology of the Walker cell and diabatic heating. These results highlight the key roles of the model’s background climatology in the Walker cell and diabatic heating, thus providing important clues to improving the model’s ability.

Corresponding author address: Dr. Shuanglin Li, NZC/IAP/CAS, P.O. Box 9804, Beijing 100029, China. E-mail: shuanglin.li@mail.iap.ac.cn

Abstract

This study examines the skills in simulating interannual variability of northwestern Pacific (NWP) summer climate in 12 atmospheric general circulation models (AGCMs) attending the Atmospheric Model Intercomparison Project phase 2 (AMIP II). The models show a wide range of skills, among those version 1 of the Hadley Centre Global Atmosphere Model (HadGAM1) showed the highest fidelity and thus may be a better choice for studying East Asian–NWP summer climate. To understand the possible causes for the difference among the models, five models {HadGAM1; ECHAM5; the Geophysical Fluid Dynamics Laboratory Atmosphere Model, version 2.1 (AM2.1); Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2(hires)]; and the fourth-generation National Center for Atmospheric Research Community Atmosphere Model (CAM3)} that have various skill levels, ranging from the highest to the moderate to the minor, were selected for analyses. The simulated teleconnection of NWP summer climate with sea surface temperatures (SSTs) in the tropical Indian and Pacific Oceans was first compared. HadGAM1 reproduces suppressed (intensified) rainfall during El Niño (La Niña) events and captures well the remote connection with the tropical Indian Ocean, while the other models either underestimate [ECHAM5, AM2.1, MIROC3.2(hires)] or fail to reproduce (CAM3) these teleconnections. The Walker cell and diabatic heating were further compared to shed light on the underlying physical mechanisms for the difference. Consistent with the best performance in simulating interannual rainfall, HadGAM1 exhibits the highest-level skill in capturing the observed climatology of the Walker cell and diabatic heating. These results highlight the key roles of the model’s background climatology in the Walker cell and diabatic heating, thus providing important clues to improving the model’s ability.

Corresponding author address: Dr. Shuanglin Li, NZC/IAP/CAS, P.O. Box 9804, Beijing 100029, China. E-mail: shuanglin.li@mail.iap.ac.cn
Save
  • Adler, R., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4, 269285.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 21082121.

  • Chang, C. P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. Tu, and J. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., X. Liu, and S. V. Gorder, 1998: Dynamics of the biennial oscillation in the equatorial Indian and far western Pacific Oceans. J. Climate, 11, 9871001.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Del Genio, A. D., and M.-S. Yao, 1993: Efficient cumulus parameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 181–184.

  • Ding, Y. H., 1994: Monsoons over China. Springer, 90 pp.

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335.

  • Emori, S., T. Nozawa, A. Numaguti, and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79, 939947.

    • Search Google Scholar
    • Export Citation
  • Fu, Z., and X. Teng, 1988: Climate anomalies in China associated with El Niño/Southern Oscillation (in Chinese). Chin. J. Atmos. Sci., 133141.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and S. Sajani, 1998: Monsoon precipitation in the AMIP runs. Climate Dyn., 14, 659689.

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2956.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Grandpeix, J. Y., V. Phillips, and R. Tailleux, 2004: Improved mixing representation in Emanuel’s convection scheme. Quart. J. Roy. Meteor. Soc., 130, 32073222.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., 1999: Representation of the radiative effects of convective anvils. Hadley Centre Tech. Note 7, 20 pp.

  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99 (D3), 55515568.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Huang, G., K. Hu, and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and L. Lu, 1989: Numerical simulation of the relationship between the anomaly of subtropical high in East Asia and the convective activities in the tropical western Pacific. Adv. Atmos. Sci., 6, 202214.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanisms. Adv. Atmos. Sci., 6, 2132.

    • Search Google Scholar
    • Export Citation
  • Huang, R., W. Chen, B. Yang, and R. Zhang, 2004: Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv. Atmos. Sci., 21, 407424.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implication for cumulus parameterization. Mon. Wea. Rev., 112, 15901601.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383395.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Murakami, and B. Wang, 1996: Tropical and midlatitude 45-day perturbations over the western Pacific during the northern summer. J. Meteor. Soc. Japan, 74, 867890.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., J.-Y. Lee, K.-M. Kim, and I.-S. Kang, 2004: The North Pacific as a regulator of summertime climate over Eurasia and North America. J. Climate, 17, 819833.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501514, doi:10.1007/s00382-008-0482-7.

    • Search Google Scholar
    • Export Citation
  • Li, S., D. Zhang, L. Ji, and P. Wang, 1999: The diagnosis of diabatic heating produced by the IAP T42 L9 global spectral atmospheric circulation model (in Chinese). Chin. J. Atmos. Sci., 23, 191198.

    • Search Google Scholar
    • Export Citation
  • Li, S., J. Lu, G. Huang, and K. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088.

    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285314.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. E. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL parameterization at ECMWF. Proc. Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–80.

  • Lu, R., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan, 79, 771783.

    • Search Google Scholar
    • Export Citation
  • Mascart, P., J. Noilhan, and H. Giordani, 1995: A modified parameterization of flux profile relationships in the surface layer using different roughness length values for heat and momentum. Bound.-Layer Meteor., 72, 331344.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 2750.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1993: A coupled air–sea biennial mechanism in the tropical Indian and Pacific regions: Role of the ocean. J. Climate, 6, 3141.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., and C. Kobayashi, 1998: Precipitation and moisture balance of the Asian summer monsoon in 1991. Part I: Precipitation and major circulation systems. J. Meteor. Soc. Japan, 76, 855877.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., C. Brankovic, P. Viterbo, and M. J. Miller, 1992: Modeling interannual variations of summer monsoons. J. Climate, 5, 399417.

    • Search Google Scholar
    • Export Citation
  • Pan, D.-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

  • Philander, S. G., 1990: El Niño, La Nina, and the Southern Oscillation. Academic Press, 293 pp

  • Rasmusson, E. M., X. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1, 7196.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Soman, M. K., and J. M. Slingo, 1997: Sensitivity of Asian summer monsoon to aspects of sea surface temperature anomalies in the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 123, 309336.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmosphere Model Intercomparison Project. J. Climate, 9, 27272750.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2006: How often does it rain? J. Climate, 19, 916934.

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert cumulus parameterization. J. Meteor. Soc. Japan, 66, 883900.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638.

  • Wang, B., R. Wu, and R. Lukas, 1999: Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J. Meteor. Soc. Japan, 77, 116.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Niño decaying summer. J. Climate, 23, 29742986.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2006: The key region affecting the short-term climate variations in China: The joining area of Asia and Indian-Pacific Ocean. Adv. Earth Sci., 21, 11091118.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155170.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Q. Xie, D. Wang, and W. T. Liu, 2003: Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 108, 3261, doi:10.1029/2003JC001867.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, Y. Du, G. Huang, and H. Tokinaga, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impacts of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., R. C. Yu, H. Li, and B. Wang, 2008: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21, 38333852.

    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., B. Wu, and B. Wang, 2009a: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 11591173.

    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and Coauthors, 2009b: The CLIVAR C20C project: Which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Climate Dyn., 33, 10511068, doi:10.1007/s00382-008-0501-8.

    • Search Google Scholar
    • Export Citation
  • Zhu, B., Y. Ding, and H. Luo, 1990: A review of the atmospheric general circulation and monsoon in East Asia. Acta Meteor. Sin., 48, 416.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., C.-K. Park, W.-S. Lee, and W.-T. Yun, 2008: Statistical downscaling for multi-model ensemble prediction of summer monsoon rainfall in the Asia-Pacific region using geopotential height field. Adv. Atmos. Sci., 25, 867884.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 47 9
PDF Downloads 53 26 8