A Pacific Centennial Oscillation Predicted by Coupled GCMs

Kristopher B. Karnauskas Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Kristopher B. Karnauskas in
Current site
Google Scholar
PubMed
Close
,
Jason E. Smerdon Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Jason E. Smerdon in
Current site
Google Scholar
PubMed
Close
,
Richard Seager Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
, and
Jesús Fidel González-Rouco Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Jesús Fidel González-Rouco in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Internal climate variability at the centennial time scale is investigated using long control integrations from three state-of-the-art global coupled general circulation models. In the absence of external forcing, all three models produce centennial variability in the mean zonal sea surface temperature (SST) and sea level pressure (SLP) gradients in the equatorial Pacific with counterparts in the extratropics. The centennial pattern in the tropical Pacific is dissimilar to that of the interannual El Niño–Southern Oscillation (ENSO), in that the most prominent expression in temperature is found beneath the surface of the western Pacific warm pool. Some global repercussions nevertheless are analogous, such as a hemispherically symmetric atmospheric wave pattern of alternating highs and lows. Centennial variability in western equatorial Pacific SST is a result of the strong asymmetry of interannual ocean heat content anomalies, while the eastern equatorial Pacific exhibits a lagged, Bjerknes-like response to temperature and convection in the west. The extratropical counterpart is shown to be a flux-driven response to the hemispherically symmetric circulation anomalies emanating from the tropical Pacific.

Significant centennial-length trends in the zonal SST and SLP gradients rivaling those estimated from observations and model simulations forced with increasing CO2 appear to be inherent features of the internal climate dynamics simulated by all three models. Unforced variability and trends on the centennial time scale therefore need to be addressed in estimated uncertainties, beyond more traditional signal-to-noise estimates that do not account for natural variability on the centennial time scale.

Lamont-Doherty Earth Observatory Contribution Number 7550.

Corresponding author address: Kristopher B. Karnauskas, Woods Hole Oceanographic Institution, 360 Woods Hole Road, MS #23, Woods Hole, MA 02544. E-mail: kk@whoi.edu

Abstract

Internal climate variability at the centennial time scale is investigated using long control integrations from three state-of-the-art global coupled general circulation models. In the absence of external forcing, all three models produce centennial variability in the mean zonal sea surface temperature (SST) and sea level pressure (SLP) gradients in the equatorial Pacific with counterparts in the extratropics. The centennial pattern in the tropical Pacific is dissimilar to that of the interannual El Niño–Southern Oscillation (ENSO), in that the most prominent expression in temperature is found beneath the surface of the western Pacific warm pool. Some global repercussions nevertheless are analogous, such as a hemispherically symmetric atmospheric wave pattern of alternating highs and lows. Centennial variability in western equatorial Pacific SST is a result of the strong asymmetry of interannual ocean heat content anomalies, while the eastern equatorial Pacific exhibits a lagged, Bjerknes-like response to temperature and convection in the west. The extratropical counterpart is shown to be a flux-driven response to the hemispherically symmetric circulation anomalies emanating from the tropical Pacific.

Significant centennial-length trends in the zonal SST and SLP gradients rivaling those estimated from observations and model simulations forced with increasing CO2 appear to be inherent features of the internal climate dynamics simulated by all three models. Unforced variability and trends on the centennial time scale therefore need to be addressed in estimated uncertainties, beyond more traditional signal-to-noise estimates that do not account for natural variability on the centennial time scale.

Lamont-Doherty Earth Observatory Contribution Number 7550.

Corresponding author address: Kristopher B. Karnauskas, Woods Hole Oceanographic Institution, 360 Woods Hole Road, MS #23, Woods Hole, MA 02544. E-mail: kk@whoi.edu
Save
  • Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proc. Natl. Acad. Sci. USA, 104, 37133718, doi:10.1073/pnas.0605064103.

    • Search Google Scholar
    • Export Citation
  • Bagnato, S., B. K. Linsley, S. S. Howe, G. M. Wellington, and J. Salinger, 2005: Coral oxygen isotope records of interdecadal climate variations in the South Pacific convergence zone region. Geochem. Geophys. Geosyst., 6, Q06001, doi:10.1029/2004GC000879.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2009: A verified estimate of the El Niño index Niño-3.4 since 1877. J. Climate, 22, 39793992.

  • Burgman, R., R. Seager, A. C. Clement, and C. Herweijer, 2010: Role of tropical Pacific SSTs in global medieval hydroclimate: A modeling study. Geophys. Res. Lett., 37, L06705, doi:10.1029/2009GL042239.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 2005: The evolution of El Niño, past and future. Earth Planet. Sci. Lett., 230, 227240.

  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978.

  • Conroy, J. L., A. Restrepo, J. T. Overpeck, M. Steinitz-Kannan, J. E. Cole, M. B. Bush, and P. A. Colinvaux, 2009: Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat. Geosci., 2, 4650.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1987: El Niño events and their relation to the Southern Oscillation: 1925–1986. J. Geophys. Res., 92 (C13), 14 18914 196.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • González-Rouco, F. J., H. von Storch, and E. Zorita, 2003: Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys. Res. Lett., 30, 2116, doi:10.1029/2003GL018264.

    • Search Google Scholar
    • Export Citation
  • González-Rouco, F. J., H. Beltrami, E. Zorita, and H. von Storch, 2006: Simulation and inversion of borehole temperature profiles in surrogate climates: Spatial distribution and surface coupling. Geophys. Res. Lett., 33, L01703, doi:10.1029/2005GL024693.

    • Search Google Scholar
    • Export Citation
  • González-Rouco, F. J., and Coauthors, 2011: Medieval Climate Anomaly to Little Ice Age transition as simulated by current climate models. PAGES News, No. 1, PAGES International Project Office, Bern, Switzerland, 7–8.

  • Graham, N. E., C. M. Ammann, D. Fleitmann, K. M. Cobb, and J. Luterbacher, 2010: Support for global climate reorganization during the “Medieval Climate Anomaly.” Climate Dyn., 37, 12171245.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hoerling, M. P., J. Eischeid, and J. Perlwitz, 2010: Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Climate, 23, 21312145.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 (C9), 18 56718 589.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Seager, A. Kaplan, Y. Kushnir, and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 43164321.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, and M. L’Heureux, 2010: Are tropical SST trends changing the global teleconnection during La Niña? Geophys. Res. Lett., 37, L12702, doi:10.1029/2010GL043394.

    • Search Google Scholar
    • Export Citation
  • Legutke, S., and E. Maier-Reimer, 1999: Climatology of the HOPE-G global ocean-sea ice general circulation model. DKRZ Tech. Rep. 21, 90 pp.

  • Legutke, S., and R. Voss, 1999: The Hamburg atmosphere-ocean coupled circulation Model ECHO-G. DKRZ Tech. Rep. 18, 62 pp.

  • Li, J., S.-P. Xie, E. R. Cook, G. Huang, R. D’Arrigo, F. Liu, J. Ma, and X.-T. Zheng, 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nature Climate Change, 1, 114118.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., L. Ren, R. B. Dunbar, and S. S. Howe, 2000: El Niño Southern Oscillation (ENSO) and decadal-scale climate variability at 10°N in the eastern Pacific from 1893 to 1994: A coral-based reconstruction from Clipperton Atoll. Paleoceanography, 15, 322335, doi:10.1029/1999PA000428.

    • Search Google Scholar
    • Export Citation
  • Linsley, B. K., A. Kaplan, Y. Gouriou, J. Salinger, P. B. deMenocal, G. M. Wellington, and S. S. Howe, 2006: Tracking the extent of the South Pacific convergence zone since the early 1600s. Geochem. Geophys. Geosyst., 7, Q05003, doi:10.1029/2005GC001115.

    • Search Google Scholar
    • Export Citation
  • Lough, J. M., 2007: Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography, 22, PA2218, doi:10.1029/2006PA001377.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, and O. Timm, 2010: A unified proxy for ENSO variability since 1650. Climate Past, 6, 117.

  • Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005: Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - I. Near-surface temperature, precipitation and mean sea level pressure. Tellus, 57A, 605621.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843.

  • Quinn, T. M., F. W. Taylor, and T. J. Crowley, 2006: Coral-based climate variability in the western Pacific warm pool since 1867. J. Geophys. Res., 111, C11006, doi:10.1029/2005JC003243.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute Rep. 218, 90 pp.

  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Naik, 2012: A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236261.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. F. Ting, H.-P. Huang, and J. Velez, 2005a: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005b: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40684091.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 (C7), 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Tung, K.-K., and J. Zhou, 2010: The Pacific’s response to surface heating in 130 yr of SST: La Niña–like or El Niño–like? J. Atmos. Sci., 67, 26492657.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. C. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Wara, M. W., A. C. Ravelo, and M. L. Delaney, 2005: Permanent El Niño-like conditions during the Pliocene warm period. Science, 309, 758761.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to large-scale sea surface temperature anomalies. J. Atmos. Sci., 38, 554571.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., B. P. Kirtman, J.-S. Kug, W. Park, and M. Latif, 2011: Natural variability of the central Pacific El Niño event on multi-centennial time scales. Geophys. Res. Lett., 38, L02704, doi:10.1029/2010GL045886.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

  • Zhang, W., J. Li, and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, doi:10.1029/2010JC006501.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 380 130 16
PDF Downloads 236 90 8