Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE

Anthony D. Del Genio NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Anthony D. Del Genio in
Current site
Google Scholar
PubMed
Close
,
Jingbo Wu Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Jingbo Wu in
Current site
Google Scholar
PubMed
Close
, and
Yonghua Chen Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Yonghua Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5–6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5–6 h under humid active monsoon conditions but by only 1–2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0–2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.

Corresponding author address: Anthony D. Del Genio, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: anthony.d.delgenio@nasa.gov

Abstract

Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5–6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5–6 h under humid active monsoon conditions but by only 1–2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0–2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.

Corresponding author address: Anthony D. Del Genio, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: anthony.d.delgenio@nasa.gov
Save
  • Ackerman, T. P., K.-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623.

  • Alexander, G. D., and W. R. Cotton, 1998: The use of cloud-resolving simulations of mesoscale convective systems to build a mesoscale parameterization scheme. J. Atmos. Sci., 55, 21372161.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, F. D. Marks Jr., E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104 (D6), 61556169.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, 2010: Microphysical characterisation of West African MCS anvils. Quart. J. Roy. Meteor. Soc., 136, 323344.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze Jr., 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51, 27332755.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2011: Leading and trailing anvil clouds of West African squall lines. J. Atmos. Sci., 68, 11141123.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. Tech. Rep. Series on Global Modeling and Data Assimilation, NASA Tech. Memo. NASA/TM-104606, Vol. 3, 85 pp.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Del Genio, A. D., and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15, 25972615.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738.

  • Del Genio, A. D., A. A. Lacis, and R. A. Ruedy, 1991: Simulations of the effect of a warmer climate on atmospheric humidity. Nature, 351, 382385.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M.-S. Yao, W. Kovari, and K. K.-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9, 270304.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., W. Kovari, M.-S. Yao, and J. Jonas, 2005: Cumulus microphysics and climate sensitivity. J. Climate, 18, 23762387.

  • Del Genio, A. D., M.-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, R. S. Hemler, and S. Fan, 2001: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Frederick, K., and C. Schumacher, 2008: Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Mon. Wea. Rev., 136, 206222.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., J.-P. Lafore, and F. Cheruy, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part II: 1D simulations. J. Atmos. Sci., 67, 898922.

    • Search Google Scholar
    • Export Citation
  • Gray, M. E. B., 2000: Characteristics of numerically simulated mesoscale convective systems and their application to parameterization. J. Atmos. Sci., 57, 39533970.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., and Coauthors, 2010: Estimates of tropical diabatic heating profiles: Commonalities and uncertainties. J. Climate, 23, 542558.

    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and R. B. Wilhelmson, 2011: The dependence of storm longevity on the pattern of deep convection initiation in a low-shear environment. Mon. Wea. Rev., 139, 31253138.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19, 541576.

  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note 437, 61 pp.

  • Jensen, M. P., and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42, 12341254.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., 2005: Humidity halos surrounding small cumulus clouds in a tropical environment. J. Atmos. Sci., 62, 34203425.

  • L’Ecuyer, T. S., and G. McGarrah, 2010: A 10-year climatology of tropical radiative heating and its vertical structure from TRMM observations. J. Climate, 23, 519541.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. B. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and S. A. McFarlane, 2009: Cloud classes and radiative heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) sites. J. Geophys. Res., 114, D19204, doi:10.1029/2009JD011703.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127, 10561071.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819850.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Piriou, J.-M., J.-L. Redelsperger, J.-F. Geleyn, J.-P. Lafore, and F. Guichard, 2007: An approach for convective parameterization with memory: Separating microphysics and transport in grid-scale equations. J. Atmos. Sci., 64, 41274139.

    • Search Google Scholar
    • Export Citation
  • Qian, L., G. S. Young, and W. M. Frank, 1998: A convective wake parameterization scheme for use in general circulation models. Mon. Wea. Rev., 126, 456469.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, doi:10.1029/2008GL036779.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Tao, W.-K., and M. W. Moncrieff, 2009: Multiscale cloud system modeling. Rev. Geophys., 47, RG4002, doi:10.1029/2008RG000276.

  • Tao, W.-K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40, 957982.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Wu, J., A. D. Del Genio, M.-S. Yao, and A. B. Wolf, 2009: WRF and GISS SCM simulations of convective updraft properties during TWP-ICE. J. Geophys. Res., 114, D04206, doi:10.1029/2008JD010851.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and G. W. Petty, 2010: Intercomparison of bulk microphysics schemes in model simulations of polar lows. Mon. Wea. Rev., 138, 22112288.

    • Search Google Scholar
    • Export Citation
  • Xie, S., T. Hume, C. Jakob, S. A. Klein, R. B. McCoy, and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 5779.

    • Search Google Scholar
    • Export Citation
  • Yao, M.-S., and A. D. Del Genio, 1999: Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. J. Climate, 12, 761779.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2009: Response of humidity and clouds to tropical deep convection. J. Climate, 22, 23892404.

  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2012: A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event. J. Geophys. Res.,117, D11208, doi:10.1029/2011JD016447.

  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 953 549 223
PDF Downloads 340 79 7