Atmospheric Forcing of Antarctic Sea Ice on Intraseasonal Time Scales

James A. Renwick NIWA, Wellington, New Zealand

Search for other papers by James A. Renwick in
Current site
Google Scholar
PubMed
Close
,
Alison Kohout NIWA, Wellington, New Zealand

Search for other papers by Alison Kohout in
Current site
Google Scholar
PubMed
Close
, and
Sam Dean NIWA, Wellington, New Zealand

Search for other papers by Sam Dean in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intraseasonal relationships between Antarctic sea ice and atmospheric circulation have been investigated using a 29-yr record of pentad-mean Antarctic sea ice concentration and Southern Hemisphere 500-hPa height fields. Analyses were carried out for four sea ice seasons: minimum extent, growth, maximum extent, and decay. Interannual variability was removed from both datasets to focus on intraseasonal variations. Patterns of sea ice variability and linkages to the atmospheric circulation varied markedly with season. The strongest and most coherent relationships were evident during the maximum ice extent period and to a lesser degree during the growth period. At those times of year, the strongest relationships were associated with atmospheric circulation anomalies leading sea ice anomalies by 4 or 5 days, suggesting that variations in the atmospheric circulation force changes in the sea ice field. Ice decreases are generally found in regions of poleward flow and ice increases are found in regions of equatorward flow. Mechanisms appear to be related both to thermal advection and to mechanical forcing, with the relative importance of each varying in space and in time. During the period of maximum ice extent, the leading pattern from a maximum covariance analysis between 500-hPa height and sea ice concentration accounted for 38% of the squared covariance between fields, and the associated time series were correlated at 0.74. The leading patterns of variability exhibit clear zonal wavenumber 3 signatures and appear to be largely a result of internal variability in the extratropical circulation.

Corresponding author address: Dr. J. A. Renwick, NIWA, Private Bag 14-901, Wellington 6021, New Zealand. E-mail: james.renwick@niwa.co.nz

Abstract

Intraseasonal relationships between Antarctic sea ice and atmospheric circulation have been investigated using a 29-yr record of pentad-mean Antarctic sea ice concentration and Southern Hemisphere 500-hPa height fields. Analyses were carried out for four sea ice seasons: minimum extent, growth, maximum extent, and decay. Interannual variability was removed from both datasets to focus on intraseasonal variations. Patterns of sea ice variability and linkages to the atmospheric circulation varied markedly with season. The strongest and most coherent relationships were evident during the maximum ice extent period and to a lesser degree during the growth period. At those times of year, the strongest relationships were associated with atmospheric circulation anomalies leading sea ice anomalies by 4 or 5 days, suggesting that variations in the atmospheric circulation force changes in the sea ice field. Ice decreases are generally found in regions of poleward flow and ice increases are found in regions of equatorward flow. Mechanisms appear to be related both to thermal advection and to mechanical forcing, with the relative importance of each varying in space and in time. During the period of maximum ice extent, the leading pattern from a maximum covariance analysis between 500-hPa height and sea ice concentration accounted for 38% of the squared covariance between fields, and the associated time series were correlated at 0.74. The leading patterns of variability exhibit clear zonal wavenumber 3 signatures and appear to be largely a result of internal variability in the extratropical circulation.

Corresponding author address: Dr. J. A. Renwick, NIWA, Private Bag 14-901, Wellington 6021, New Zealand. E-mail: james.renwick@niwa.co.nz
Save
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 1981: Large-scale variations in observed Antarctic sea ice extent and associated atmospheric circulation. Mon. Wea. Rev., 109, 23232336.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 2008: Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113, C07004, doi:10.1029/2007JC004564.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data (1979–2007). National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html.]

  • Comiso, J. C., 2002: A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett., 29, 1956, doi:10.1029/2002GL015650.

    • Search Google Scholar
    • Export Citation
  • Dumont, D., A. Kohout, and L. Bertino, 2011: A wave-based model for the marginal ice zone including a floe breaking parameterization. J. Geophys. Res., 116, C04001, doi:10.1029/2010JC006682.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1981: Seasonality of Southern Ocean sea ice. J. Geophys. Res., 86C, 41954197.

  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057.

    • Search Google Scholar
    • Export Citation
  • Harangozo, S. A., 2004: The impact of winter ice retreat on Antarctic winter sea-ice extent and links to the atmospheric meridional circulation. Int. J. Climatol., 24, 10231044, doi:10.1002/joc.1046.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 2000: An analysis of New Zealand synoptic types and their use in defining weather regimes. Int. J. Climatol., 20, 299316.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., and H. Goosse, 2008: An analysis of the atmospheric processes driving the large-scale winter sea ice variability in the Southern Ocean. J. Geophys. Res., 113, C02004, doi:10.1029/2006JC004032.

    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 337–383.

  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287.

    • Search Google Scholar
    • Export Citation
  • Liebmann, G., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. on Mathematical Statistics and Probability, Berkeley, CA, Statistical Laboratory, University of California, 281–297.

  • Matthewman, N. J., and G. Magnusdottir, 2011: Observed interaction between Pacific sea ice and the western Pacific pattern on intraseasonal time scales. J. Climate, 24, 50315042.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596.

    • Search Google Scholar
    • Export Citation
  • Mo, R. P., 2003: Efficient algorithms for maximum covariance analysis of datasets with many variables and fewer realizations: A revisit. J. Atmos. Oceanic Technol., 20, 18041809.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 1998: ENSO-related variability in the frequency of South Pacific blocking. Mon. Wea. Rev., 126, 31173123.

  • Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15, 30583068.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2005: Persistent positive anomalies in the Southern Hemisphere circulation. Mon. Wea. Rev., 133, 977988.

  • Renwick, J. A., and M. J. Revell, 1999: Blocking over the South Pacific and Rossby wave propagation. Mon. Wea. Rev., 127, 22332247.

  • Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, doi:10.1029/2010GL044301.

    • Search Google Scholar
    • Export Citation
  • Spence, P., J. C. Fyfe, A. Montenegro, and A. J. Weaver, 2010: Southern Ocean response to strengthening winds in an eddy-permitting global climate model. J. Climate, 23, 53325343.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., M. R. Drinkwater, R. C. Smith, and X. Liu, 2003: Ice-atmosphere interactions during sea-ice advance and retreat in the western Antarctic Peninsula region. J. Geophys. Res., 108, 3329, doi:10.1029/2002JC001543.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Thomas, D. N., and G. S. Dieckmann, Eds., 2003: Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell Science, 402 pp.

  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 2000: Ice in the Ocean. Gordon and Breach, 351 pp.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. International Geophysical Series, Vol. 59, Academic Press, 467 pp.

  • Yuan, X. J., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425.

  • Yuan, X. J., and C. Li, 2008: Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res., 113, C06S91, doi:10.1029/2006JC004067.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2007: Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J. Climate, 20, 25152529.

  • Zwally, H. J., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri, and P. Gloersen, 2002: Variability of Antarctic sea ice 1979–1998. J. Geophys. Res., 107, 3041, doi:10.1029/2000JC000733.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 456 154 7
PDF Downloads 366 105 7