Changes in Western Pacific Tropical Cyclones Associated with the El Niño–Southern Oscillation Cycle

Richard C. Y. Li Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Richard C. Y. Li in
Current site
Google Scholar
PubMed
Close
and
Wen Zhou Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Wen Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the interannual variability of three groups of tropical cyclones (TCs)—super typhoons (STYs), typhoons (TYs), and tropical storms and tropical depressions (TSTDs)—and their relationship with the El Niño–Southern Oscillation (ENSO). Both wavelet analysis and correlation studies of upper-ocean heat content reveal significant differences for the three types of TCs. In particular, an increase (decrease) in the frequency of STYs is usually associated with the mature phase of El Niño (La Niña) events, while the converse is true for TSTDs. In contrast, the frequency of TYs increases (decreases) during the transition period from La Niña to El Niño (El Niño to La Niña) events. The results suggest that the timing with which ENSO impacts STYs, TYs, and TSTDs varies and that their corresponding changes in frequency closely follow the evolution of the ENSO cycle.

Empirical orthogonal function analysis is also conducted to investigate the impact of different environmental factors influenced by ENSO on TCs. The vertical wind shear and moist static energy associated with ENSO are identified as the dominant factors that control the frequency of STYs. In comparison, the frequency of TYs is found to be closely related to the relative vorticity and vertical wind shear associated with both the transition phase of ENSO and with other types of climate variability.

Corresponding author address: Wen Zhou, School of Energy and Environment, City University of Hong Kong, Hong Kong Science Park, Hong Kong 00852, China. E-mail: wenzhou@cityu.edu.hk

Abstract

This study examines the interannual variability of three groups of tropical cyclones (TCs)—super typhoons (STYs), typhoons (TYs), and tropical storms and tropical depressions (TSTDs)—and their relationship with the El Niño–Southern Oscillation (ENSO). Both wavelet analysis and correlation studies of upper-ocean heat content reveal significant differences for the three types of TCs. In particular, an increase (decrease) in the frequency of STYs is usually associated with the mature phase of El Niño (La Niña) events, while the converse is true for TSTDs. In contrast, the frequency of TYs increases (decreases) during the transition period from La Niña to El Niño (El Niño to La Niña) events. The results suggest that the timing with which ENSO impacts STYs, TYs, and TSTDs varies and that their corresponding changes in frequency closely follow the evolution of the ENSO cycle.

Empirical orthogonal function analysis is also conducted to investigate the impact of different environmental factors influenced by ENSO on TCs. The vertical wind shear and moist static energy associated with ENSO are identified as the dominant factors that control the frequency of STYs. In comparison, the frequency of TYs is found to be closely related to the relative vorticity and vertical wind shear associated with both the transition phase of ENSO and with other types of climate variability.

Corresponding author address: Wen Zhou, School of Energy and Environment, City University of Hong Kong, Hong Kong Science Park, Hong Kong 00852, China. E-mail: wenzhou@cityu.edu.hk
Save
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006.

  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2007: Interannual variations of intense typhoon activity. Tellus, 59, 455460.

  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc. London, 464A, 249272.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and M. Xu, 2009: Inter-annual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: Time-series analysis. Int. J. Climatol., 29, 12851293.

    • Search Google Scholar
    • Export Citation
  • Chen, G. H., and R. Huang, 2008: Influence of monsoon over the warm pool on interannual variation on tropical cyclone activity over the western North Pacific. Adv. Atmos. Sci., 25, 319328.

    • Search Google Scholar
    • Export Citation
  • Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944.

    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. Nolan, 2004: Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at http://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Frank, W. M., and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 35873598.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Huang, F., and S. Xu, 2010: Super typhoon activity over the western North Pacific and its relationship with ENSO. J. Ocean Univ. China, 9, 123128.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95 (C4), 51835217.

  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., K. Miyakoda, and S. Yang, 2002: Recent change in the connection from the Asian monsoon to ENSO. J. Climate, 15, 12031215.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477.

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178.

  • Wada, A., and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603, doi:10.1029/2008GL035129.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and R. Lukas, 1999: Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J. Meteor. Soc. Japan, 77, 116.

    • Search Google Scholar
    • Export Citation
  • Wu, M. C., W. L. Chang, and W. M. Leung, 2004: Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Climate, 17, 14191428.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011: Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., and J. C. L. Chan, 2007: ENSO and South China Sea summer monsoon onset. Int. J. Climatol., 27, 157167.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1204 557 67
PDF Downloads 713 218 39