Testing the Role of Radiation in Determining Tropical Cloud-Top Temperature

Bryce E. Harrop Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Bryce E. Harrop in
Current site
Google Scholar
PubMed
Close
and
Dennis L. Hartmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A cloud-resolving model is used to test the hypothesis that radiative cooling by water vapor emission is the primary control on the temperature of tropical anvil clouds. The temperature of ice clouds in the simulation can be increased or decreased by changing only the emissivity of water vapor in the upper troposphere. The effect of the model’s fixed ozone profile on stability creates a pressure-dependent inhibition of convection, leading to a small warming in cloud-top temperature as SST is increased. Increasing stratospheric water vapor also warms the cloud-top temperature slightly. Changing the latent heat of fusion reduces the cloud fraction at high altitudes, but does not significantly change temperature at which cloud fraction peaks in the upper troposphere. The relationship between radiatively driven horizontal mass convergence and cloud fraction that causes cloud temperature to be insensitive to surface temperature is preserved when a large model domain is used so that convection aggregates in a small part of the model domain.

Corresponding author address: Bryce E. Harrop, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: bryce@atmos.washington.edu

Abstract

A cloud-resolving model is used to test the hypothesis that radiative cooling by water vapor emission is the primary control on the temperature of tropical anvil clouds. The temperature of ice clouds in the simulation can be increased or decreased by changing only the emissivity of water vapor in the upper troposphere. The effect of the model’s fixed ozone profile on stability creates a pressure-dependent inhibition of convection, leading to a small warming in cloud-top temperature as SST is increased. Increasing stratospheric water vapor also warms the cloud-top temperature slightly. Changing the latent heat of fusion reduces the cloud fraction at high altitudes, but does not significantly change temperature at which cloud fraction peaks in the upper troposphere. The relationship between radiatively driven horizontal mass convergence and cloud fraction that causes cloud temperature to be insensitive to surface temperature is preserved when a large model domain is used so that convection aggregates in a small part of the model domain.

Corresponding author address: Bryce E. Harrop, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: bryce@atmos.washington.edu
Save
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292.

    • Search Google Scholar
    • Export Citation
  • Chae, J. H., and S. C. Sherwood, 2010: Insights into cloud-top height and dynamics from the seasonal cycle of cloud-top heights observed by MISR in the west Pacific region. J. Atmos. Sci., 67, 248261.

    • Search Google Scholar
    • Export Citation
  • Dinh, T. P., D. R. Durran, and T. P. Ackerman, 2010: Maintenance of tropical tropopause layer cirrus. J. Geophys. Res., 115, D02104, doi:10.1029/2009JD012735.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66, 28592873.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., K. Xu, and T. Wong, 2009: Cloud and radiative characteristics of tropical deep convective systems in extended cloud objects from CERES observations. J. Climate, 22, 59836000.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and Coauthors, 2005: Evolution of a Florida cirrus anvil. J. Atmos. Sci., 62, 23522372.

  • Garrett, T. J., M. A. Zulauf, and S. K. Krueger, 2006: Effects of cirrus near the tropopause on anvil cirrus dynamics. Geophys. Res. Lett., 33, L17804, doi:10.1029/2006GL027071.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29, 1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, M. D. King, and S. Platnick, 2007: High cloud properties from three years of MODIS Terra and Aqua collection-4 data over the tropics. J. Appl. Meteor. Climatol., 46, 18401856.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576.

  • Hurst, D. F., S. J. Oltmans, H. Voemel, K. H. Rosenlof, S. M. Davis, E. A. Ray, E. G. Hall, and A. F. Jordan, 2011: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year boulder. J. Geophys. Res., 116, D02306, doi:10.1029/2010JD015065.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the arm summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Kley, D., P. J. Crutzen, H. G. J. Smit, H. Vomel, S. J. Oltmans, H. Grassl, and V. Ramanathan, 1996: Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry. Science, 274, 230233, doi:10.1126/science.274.5285.230.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., and M. Zulauf, 2005: Radiatively-induced anvil spreading. Proc. 15th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, FL, DOE, 1–9. [Available online at http://www.arm.gov/publications/proceedings/conf15/extended_abs/krueger_sk.pdf.]

  • Kuang, Z., and C. S. Bretherton, 2004: Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61, 29192927.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and D. L. Hartmann, 2007: Testing the fixed anvil temperature hypothesis in a cloud-resolving model. J. Climate, 20, 20512057.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20, 55105526.

  • Lawrence, M., P. Crutzen, and P. Rasch, 1999: Analysis of the CEPEX ozone data using a 3D chemistry-meteorology model. Quart. J. Roy. Meteor. Soc., 125, 29873009.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., J. H. Mather, and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Oman, L., D. W. Waugh, S. Pawson, R. S. Stolarski, and J. E. Nielsen, 2008: Understanding the changes of stratospheric water vapor in coupled chemistry-climate model simulations. J. Atmos. Sci., 65, 32783291.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and Coauthors, 2000: The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific issues and initial results. Bull. Amer. Meteor. Soc., 81, 781796.

    • Search Google Scholar
    • Export Citation
  • Rind, D., and P. Lonergan, 1995: Modeled impacts of stratospheric ozone and water-vapor perturbations with implications for high-speed civil transport aircraft. J. Geophys. Res., 100 (D4), 73817396.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2003: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res., 108 8238, doi:10.1029/2001JD000967.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., A. L. Allen, S. Lee, S. K. Miller, and J. C. Witte, 2011: Gravity and Rossby wave signatures in the tropical troposphere and lower stratosphere based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998–2007. J. Geophys. Res., 116, D05302, doi:10.1029/2009JD013429.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1999: Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J. Climate, 12, 462476.

    • Search Google Scholar
    • Export Citation
  • Xu, K., T. Wong, B. A. Wielicki, L. Parker, B. Lin, Z. A. Eitzen, and M. Branson, 2007: Statistical analyses of satellite cloud object data from CERES. Part II: Tropical convective cloud objects during 1998 El Niño and evidence for supporting the fixed anvil temperature hypothesis. J. Climate, 20, 819842.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2011: The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J. Geophys. Res., 116, D23103, doi:10.1029/2011JD016459.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 114 10
PDF Downloads 238 87 11