On Recent Trends in Atmospheric and Limnological Variables in Lake Ontario

Anning Huang School of Atmospheric Sciences, Nanjing University, Nanjing, China, and National Water Research Institute, Environment Canada, Burlington, Ontario, Canada

Search for other papers by Anning Huang in
Current site
Google Scholar
PubMed
Close
,
Yerubandi R. Rao National Water Research Institute, Environment Canada, Burlington, Ontario, Canada

Search for other papers by Yerubandi R. Rao in
Current site
Google Scholar
PubMed
Close
, and
Weitao Zhang National Water Research Institute, Environment Canada, Burlington, Ontario, Canada

Search for other papers by Weitao Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The surface air and water temperatures increased at all seasonal and annual time scales during the last 40 yr in Lake Ontario. The annual mean air and surface water temperatures have increased by 1.43° ±0.39° and 1.26° ±0.32°C, respectively, over 1970–2009. The air temperature increased at a faster rate than the surface water temperature in winter and autumn, whereas in spring and summer the surface water temperature warmed faster than the air temperature. The length of summer stratified season has increased by 12 ± 2 days since the early 1970s due to the increase in water temperature. The decline of surface wind speed over Lake Ontario resulted in a shallower surface mixed layer and enhanced the summer thermal stratification, which increased the summer surface water temperature more rapidly than the air temperature.

Corresponding author address: Dr. Anning Huang, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China. E-mail: anhuang@nju.edu.cn

Abstract

The surface air and water temperatures increased at all seasonal and annual time scales during the last 40 yr in Lake Ontario. The annual mean air and surface water temperatures have increased by 1.43° ±0.39° and 1.26° ±0.32°C, respectively, over 1970–2009. The air temperature increased at a faster rate than the surface water temperature in winter and autumn, whereas in spring and summer the surface water temperature warmed faster than the air temperature. The length of summer stratified season has increased by 12 ± 2 days since the early 1970s due to the increase in water temperature. The decline of surface wind speed over Lake Ontario resulted in a shallower surface mixed layer and enhanced the summer thermal stratification, which increased the summer surface water temperature more rapidly than the air temperature.

Corresponding author address: Dr. Anning Huang, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China. E-mail: anhuang@nju.edu.cn
Save
  • Assel, R. A., K. Cronk, and D. C. Norton, 2003: Recent trends in Laurentian Great Lakes ice cover. Climatic Change, 57, 185204.

  • Austin, J., and S. Colman, 2007: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett., 34, L06604, doi:10.1029/2006GL029021.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and S. Colman, 2008: A century of temperature variability in Lake Superior. Limnol. Oceanogr., 53, 27242730.

  • Bates, G. T., F. Giorgi, and S. W. Hostetler, 1993: Toward the simulation of the effects of the Great Lakes on regional climate. Mon. Wea. Rev., 121, 13731387.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Desai, A. R., J. Austin, V. Bennington, and G. A. Mckinley, 2009: Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci., 2, 855858.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293.

    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J. Appl. Meteor., 33, 757765.

    • Search Google Scholar
    • Export Citation
  • Huang, A., Y. R. Rao, and Y. Lu, 2010: Evaluation of a 3-D hydrodynamic model and atmospheric forecast forcing using observations in Lake Ontario. J. Geophys. Res., 115, C02004, doi:10.1029/2009JC005601.

    • Search Google Scholar
    • Export Citation
  • King, J. R., B. J. Shuter, and A. P. Zimmerman, 1997: The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Can. J. Fish. Aquat. Sci., 54, 18731882.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 1997: Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10, 28472858.

    • Search Google Scholar
    • Export Citation
  • Magnuson, J. J., and Coauthors, 2000: Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289, 17431746.

    • Search Google Scholar
    • Export Citation
  • McCormick, M. J., and G. L. Fahnenstiel, 1999: Recent climatic trends in nearshore water temperatures in the St. Lawrence Great Lakes. Limnol. Oceanogr., 44, 530540.

    • Search Google Scholar
    • Export Citation
  • Mortsch, L. D., and F. H. Quinn, 1996: Climate change scenarios for Great Lakes basin ecosystem studies. Limnol. Oceanogr., 43, 903911.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. M., S. R. Alin, P. D. Plisnier, A. S. Cohen, and B. A. McKee, 2003: Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 424, 766768.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381404.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Simons, T. J., and W. M. Schertzer, 1989: The Circulation of Lake Ontario during Summer of 1982 and Winter of 1982/83. Inland Waters Directorate Scientific Series, Vol. 171, Environment Canada, 191 pp.

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Ignore, and H. L. Miller, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 12091225.

    • Search Google Scholar
    • Export Citation
  • Wang, J., M. Ikeda, S. Zhang, and R. Gerdes, 2005: Linking the Northern Hemisphere sea-ice reduction trend and the quasi-decadal Arctic sea-ice oscillation. Climate Dyn., 24, 115130, doi:10.1007/s00382-004-0454-5.

    • Search Google Scholar
    • Export Citation
  • Wang, J., X. Bai, H. Hu, A. Clites, M. Colton, and B. Lofgren, 2012: Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Climate, 25, 13181329.

    • Search Google Scholar
    • Export Citation
  • Winder, M., and D. E. Schindler, 2004: Climatic effects on the phonology of lake processes. Global Change Biol., 10, 18441856.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 109 22
PDF Downloads 226 75 20