Climate Model–Simulated Diurnal Cycles in HIRS Clear-Sky Brightness Temperatures

Ian A. MacKenzie The University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Ian A. MacKenzie in
Current site
Google Scholar
PubMed
Close
,
Simon F. B. Tett The University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Simon F. B. Tett in
Current site
Google Scholar
PubMed
Close
, and
Anders V. Lindfors The University of Edinburgh, Edinburgh, United Kingdom, and Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Anders V. Lindfors in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Clear-sky brightness temperature measurements from the High-Resolution Infrared Radiation Sounder (HIRS) are simulated with two climate models via a radiative transfer code. The models are sampled along the HIRS orbit paths to derive diurnal climatologies of simulated brightness temperature analogous to an existing climatology based on HIRS observations. Simulated and observed climatologies are compared to assess model performance and the robustness of the observed climatology.

Over land, there is good agreement between simulations and observations, with particularly high consistency for the tropospheric temperature channels. Diurnal cycles in the middle- and upper-tropospheric water vapor channels are weak in both simulations and observations, but the simulated diurnal brightness temperature ranges are smaller than are observed with different phase and there are also intermodel differences. Over sea, the absence of diurnal variability in the models’ sea surface temperatures causes an underestimate of the small diurnal cycles measured in the troposphere.

The simulated and observed climatologies imply similar diurnal sampling biases in the HIRS record for the tropospheric temperature channels, but for the upper-tropospheric water vapor channel, differences in the contributions of the 24- and 12-hourly diurnal harmonics lead to differences in the implied bias. Comparison of diurnal cycles derived from HIRS-like and full model sampling suggests that the HIRS measurements are sufficient to fully constrain the diurnal behavior.

Overall, the results suggest that recent climate models well represent the major processes driving the diurnal behavior of clear-sky brightness temperature in the HIRS channels. This encourages further studies of observed and simulated climate trends over the HIRS era.

Corresponding author address: Ian A. MacKenzie, The University of Edinburgh, School of GeoSciences, Crew Building, The Kings Buildings, Edinburgh EH9 3JN, United Kingdom. E-mail: iamack@staffmail.ed.ac.uk

Abstract

Clear-sky brightness temperature measurements from the High-Resolution Infrared Radiation Sounder (HIRS) are simulated with two climate models via a radiative transfer code. The models are sampled along the HIRS orbit paths to derive diurnal climatologies of simulated brightness temperature analogous to an existing climatology based on HIRS observations. Simulated and observed climatologies are compared to assess model performance and the robustness of the observed climatology.

Over land, there is good agreement between simulations and observations, with particularly high consistency for the tropospheric temperature channels. Diurnal cycles in the middle- and upper-tropospheric water vapor channels are weak in both simulations and observations, but the simulated diurnal brightness temperature ranges are smaller than are observed with different phase and there are also intermodel differences. Over sea, the absence of diurnal variability in the models’ sea surface temperatures causes an underestimate of the small diurnal cycles measured in the troposphere.

The simulated and observed climatologies imply similar diurnal sampling biases in the HIRS record for the tropospheric temperature channels, but for the upper-tropospheric water vapor channel, differences in the contributions of the 24- and 12-hourly diurnal harmonics lead to differences in the implied bias. Comparison of diurnal cycles derived from HIRS-like and full model sampling suggests that the HIRS measurements are sufficient to fully constrain the diurnal behavior.

Overall, the results suggest that recent climate models well represent the major processes driving the diurnal behavior of clear-sky brightness temperature in the HIRS channels. This encourages further studies of observed and simulated climate trends over the HIRS era.

Corresponding author address: Ian A. MacKenzie, The University of Edinburgh, School of GeoSciences, Crew Building, The Kings Buildings, Edinburgh EH9 3JN, United Kingdom. E-mail: iamack@staffmail.ed.ac.uk
Save
  • Allan, R. P., M. A. Ringer, and A. Slingo, 2003: Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water-vapour channel radiances. Quart. J. Roy. Meteor. Soc., 129, 33713389, doi:10.1256/qj.02.217.

    • Search Google Scholar
    • Export Citation
  • Bates, J. J., and D. L. Jackson, 2001: Trends in upper-tropospheric humidity. Geophys. Res. Lett., 28, 16951698.

  • Betts, A., and J. Ball, 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100 (D12), 25 67925 693.

  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2010a: Investigating the influence of carbon dioxide and the stratosphere on the long-term tropospheric temperature monitoring from HIRS. J. Appl. Meteor. Climatol., 49, 19271937.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2010b: Radiative signature of increasing atmospheric carbon dioxide in HIRS satellite observations. Geophys. Res. Lett., 37, L07707, doi:10.1029/2010GL042698.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., B. J. Soden, B.-J. Sohn, and J. Schmetz, 2011: Model-simulated humidity bias in the upper troposphere and its relation to the large-scale circulation. J. Geophys. Res., 116, D10110, doi:10.1029/2011JD015609.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2008: Evaluation of the HadGEM2 model. Hadley Centre Tech. Note HCTN 74, 47 pp. [Available online at http://www.metoffice.gov.uk/archive/science/climate-science/hctn74.]

  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203.

    • Search Google Scholar
    • Export Citation
  • Engelen, R., L. Fowler, P. Gleckler, and M. Wehner, 2000: Sampling strategies for the comparison of climate model calculated and satellite observed brightness temperatures. J. Geophys. Res., 105 (D7), 93939406.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., M. J. Best, R. A. Best, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530543.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Q. Fu, 2008: Observed and simulated upper-tropospheric water vapor feedback. J. Climate, 21, 32823289.

  • Held, I., and B. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, J. S. Mlawer, and S. A. Clough, 2003: Evaluation of upper tropospheric water vapor in the NCAR Community Climate Model (CCM3) using modeled and observed HIRS radiances. J. Geophys. Res., 108, 4037, doi:10.1029/2002JD002539.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., and B. J. Soden, 2007: Detection and correction of diurnal sampling bias in HIRS/2 brightness temperatures. J. Atmos. Oceanic Technol., 24, 14251438.

    • Search Google Scholar
    • Export Citation
  • John, V. O., and B. J. Soden, 2007: Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophys. Res. Lett., 34, L18704, doi:10.1029/2007GL030429.

    • Search Google Scholar
    • Export Citation
  • John, V. O., G. Holl, R. P. Allan, S. A. Buehler, D. E. Parker, and B. J. Soden, 2011: Clear-sky biases in satellite infrared estimates of upper tropospheric humidity and its trends. J. Geophys. Res., 116, D14108, doi:10.1029/2010JD015355.

    • Search Google Scholar
    • Export Citation
  • Johns, T., and Coauthors, 2006: The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19, 13271353.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570, doi:10.5194/gmd-4-543-2011.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., A. Gruber, R. G. Ellingson, and I. Laszlo, 2007: Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Oceanic Technol., 24, 20292047.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. W. Wolf, W. P. Menzel, W. Zhang, H.-L. Huang, and T. H. Achtor, 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 12481268.

    • Search Google Scholar
    • Export Citation
  • Lindfors, A. V., I. A. MacKenzie, S. F. B. Tett, and L. Shi, 2011: Climatological diurnal cycles in clear-sky brightness temperatures from the high-resolution infrared radiation sounder (HIRS). J. Atmos. Oceanic Technol., 28, 11991205.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 12741301.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., 2009: Technical note: An assessment of the accuracy of the RTTOV fast radiative transfer model using IASI data. Atmos. Chem. Phys., 9, 68996913.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., F. Chevallier, G. Kelly, and J. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153173, doi:10.1256/qj.02.181.

    • Search Google Scholar
    • Export Citation
  • Mears, C., and F. Wentz, 2005: The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science, 309, 15481551, doi:10.1126/science.1114772.

    • Search Google Scholar
    • Export Citation
  • Mears, C., M. Schabel, and F. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 36503664.

    • Search Google Scholar
    • Export Citation
  • Pierce, D., T. Barnett, E. Fetzer, and P. Gleckler, 2006: Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system. Geophys. Res. Lett., 33, L21701, doi:10.1029/2006GL027060.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123146, doi:10.1007/s003820050009.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robel, J., cited 2009: NOAA KLM user’s guide (February 2009 rev. ed.) NOAA/National Climatic Data Center, February 2009 ed. [Available online at http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/intro.htm.]

  • Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425.

    • Search Google Scholar
    • Export Citation
  • Sherlock, V. J., 1999: ISEM-6: Infrared surface emissivity model for RTTOV-6. Met Office Forecasting Research Tech. Rep. 299, 17 pp.

  • Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova, 2010: Tropospheric water vapor, convection, and climate. Rev. Geophys., 48, RG2001, doi:10.1029/2009RG000301.

    • Search Google Scholar
    • Export Citation
  • Shi, L., and J. J. Bates, 2011: Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor. J. Geophys. Res., 116, D04108, doi:10.1029/2010JD014847.

    • Search Google Scholar
    • Export Citation
  • Shi, L., J. J. Bates, and C. Cao, 2008: Scene radiance–dependent intersatellite biases of HIRS longwave channels. J. Atmos. Oceanic Technol., 25, 22192229.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., P. E. Mlynczak, D. A. Rutan, and T. Wong, 2008: Comparison of the diurnal cycle of outgoing longwave radiation from a climate model with results from ERBE. J. Appl. Meteor. Climatol., 47, 31883201.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys. Res. Lett., 27, 21732176.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., R. T. Wetherald, G. L. Stenchikov, and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727730, doi:10.1126/science.296.5568.727.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. Jackson, V. Ramaswamy, M. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., J. Schmetz, and E.-S. Chung, 2008: Moistening processes in the tropical upper troposphere observed from Meteosat measurements. J. Geophys. Res., 113, D13109, doi:10.1029/2007JD009527.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Tian, B., B. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.

    • Search Google Scholar
    • Export Citation
  • Yang, G., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Zeng, Z., W. Randel, S. Sokolovskiy, C. Deser, Y.-H. Kuo, M. Hagan, J. Du, and W. Ward, 2008: Detection of migrating diurnal tide in the tropical upper troposphere and lower stratosphere using the Challenging Minisatellite Payload radio occultation data. J. Geophys. Res., 113, D03102, doi:10.1029/2007JD008725.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 75 8
PDF Downloads 77 46 7