Mechanisms of Arctic Surface Air Temperature Change in Response to the Madden–Julian Oscillation

Changhyun Yoo Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Changhyun Yoo in
Current site
Google Scholar
PubMed
Close
,
Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
, and
Steven B. Feldstein Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using lagged composites and projections with the thermodynamic energy equation, in this study the mechanisms that drive the boreal winter Arctic surface air temperature (SAT) change associated with the Madden–Julian oscillation (MJO) are investigated. The Wheeler and Hendon MJO index, which divides the MJO into 8 phases, where phase 1 (phase 5) corresponds to reduced (enhanced) convection over the Maritime Continent and western Pacific Ocean, is used. It is shown that the more zonally localized (uniform) tropical convective heating associated with MJO phase 5 (phase 1) leads to enhanced (reduced) excitation of poleward-propagating Rossby waves, which contribute to Arctic warming (cooling). Adiabatic warming/cooling, eddy heat flux, and the subsequent change in downward infrared radiation (IR) flux are found to be important for the Arctic SAT change. The adiabatic warming/cooling initiates the Arctic SAT change, however, subsequent eddy heat flux makes a greater contribution. The resulting SAT change is further amplified by alteration in downward IR. It is shown that changes in surface sensible and latent heat fluxes oppose the contribution by the above processes.

Current affiliation: Center for Atmosphere Ocean Science, Courant Institute, New York University, New York, New York.

Corresponding author address: Changhyun Yoo, Center for Atmosphere Ocean Science, Courant Institute, New York University, 251 Mercer Street, New York, NY 10012. E-mail: cyoo@cims.nyu.edu

Abstract

Using lagged composites and projections with the thermodynamic energy equation, in this study the mechanisms that drive the boreal winter Arctic surface air temperature (SAT) change associated with the Madden–Julian oscillation (MJO) are investigated. The Wheeler and Hendon MJO index, which divides the MJO into 8 phases, where phase 1 (phase 5) corresponds to reduced (enhanced) convection over the Maritime Continent and western Pacific Ocean, is used. It is shown that the more zonally localized (uniform) tropical convective heating associated with MJO phase 5 (phase 1) leads to enhanced (reduced) excitation of poleward-propagating Rossby waves, which contribute to Arctic warming (cooling). Adiabatic warming/cooling, eddy heat flux, and the subsequent change in downward infrared radiation (IR) flux are found to be important for the Arctic SAT change. The adiabatic warming/cooling initiates the Arctic SAT change, however, subsequent eddy heat flux makes a greater contribution. The resulting SAT change is further amplified by alteration in downward IR. It is shown that changes in surface sensible and latent heat fluxes oppose the contribution by the above processes.

Current affiliation: Center for Atmosphere Ocean Science, Courant Institute, New York University, New York, New York.

Corresponding author address: Changhyun Yoo, Center for Atmosphere Ocean Science, Courant Institute, New York University, 251 Mercer Street, New York, NY 10012. E-mail: cyoo@cims.nyu.edu
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048.

    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008gl033614.

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611619.

  • Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, L11701, doi:10.1029/2010gl043468.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Kuttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924.

  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60-day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady-state linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11751196.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363.

  • Lee, S., S. Feldstein, D. Pollard, and T. White, 2011a: Do planetary wave dynamics contribute to equable climates? J. Climate, 24, 23912404.

    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. Feldstein, and D. Pollard, 2011b: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2009: The Influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 22502262.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006jd008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—Review. Mon. Wea. Rev., 122, 814837.

  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 12111227.

    • Search Google Scholar
    • Export Citation
  • Schneider, D., C. Deser, and Y. Okumura, 2011: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 125, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climate model based on the energy balance of the earth–atmospheric system. J. Appl. Meteor., 86, 392400.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and D. G. Duffy, 1992: Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci., 49, 15411554.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and N. A. Bond, 2004: The Madden–Julian oscillation (MJO) and northern high-latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, doi:10.1029/2003gl018645.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Feldstein, and S. Lee, 2011: The impact of the Madden–Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979-2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011gl049881.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. Feldstein, 2012: Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci., 69, 23792393.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2558 1535 454
PDF Downloads 765 138 14