Greenland Freshwater Runoff. Part II: Distribution and Trends, 1960–2010

Sebastian H. Mernild Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Sebastian H. Mernild in
Current site
Google Scholar
PubMed
Close
and
Glen E. Liston Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Glen E. Liston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Runoff magnitudes, the spatial patterns from individual Greenland catchments, and their changes through time (1960–2010) were simulated in an effort to understand runoff variations to adjacent seas and to illustrate the capability of SnowModel (a snow and ice evolution model) and HydroFlow (a runoff routing model) to link variations in terrestrial runoff with ocean processes and other components of Earth’s climate system. Significant increases in air temperature, net precipitation, and local surface runoff lead to enhanced and statistically significant Greenland ice sheet (GrIS) surface mass balance (SMB) loss. Total Greenland runoff to the surrounding oceans increased 30%, averaging 481 ± 85 km3 yr−1. Averaged over the period, 69% of the runoff to the surrounding seas originated from the GrIS and 31% came from outside the GrIS from rain and melting glaciers and ice caps. The runoff increase from the GrIS was due to an 87% increase in melt extent, 18% from increases in melt duration, and a 5% decrease in melt rates (87% + 18% − 5% = 100%). In contrast, the runoff increase from the land area surrounding the GrIS was due to a 0% change in melt extent, a 108% increase in melt duration, and an 8% decrease in melt rate. In general, years with positive Atlantic multidecadal oscillation (AMO) index equaled years with relatively high Greenland runoff volume and vice versa. Regionally, runoff was greater from western than eastern Greenland. Since 1960, the data showed pronounced runoff increases in west Greenland, with the greatest increase occurring in the southwest and the lowest increase in the northwest.

Corresponding author address: Dr. Sebastian H. Mernild, Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, Los Alamos, NM 87545. E-mail: mernild@lanl.gov

Abstract

Runoff magnitudes, the spatial patterns from individual Greenland catchments, and their changes through time (1960–2010) were simulated in an effort to understand runoff variations to adjacent seas and to illustrate the capability of SnowModel (a snow and ice evolution model) and HydroFlow (a runoff routing model) to link variations in terrestrial runoff with ocean processes and other components of Earth’s climate system. Significant increases in air temperature, net precipitation, and local surface runoff lead to enhanced and statistically significant Greenland ice sheet (GrIS) surface mass balance (SMB) loss. Total Greenland runoff to the surrounding oceans increased 30%, averaging 481 ± 85 km3 yr−1. Averaged over the period, 69% of the runoff to the surrounding seas originated from the GrIS and 31% came from outside the GrIS from rain and melting glaciers and ice caps. The runoff increase from the GrIS was due to an 87% increase in melt extent, 18% from increases in melt duration, and a 5% decrease in melt rates (87% + 18% − 5% = 100%). In contrast, the runoff increase from the land area surrounding the GrIS was due to a 0% change in melt extent, a 108% increase in melt duration, and an 8% decrease in melt rate. In general, years with positive Atlantic multidecadal oscillation (AMO) index equaled years with relatively high Greenland runoff volume and vice versa. Regionally, runoff was greater from western than eastern Greenland. Since 1960, the data showed pronounced runoff increases in west Greenland, with the greatest increase occurring in the southwest and the lowest increase in the northwest.

Corresponding author address: Dr. Sebastian H. Mernild, Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, Los Alamos, NM 87545. E-mail: mernild@lanl.gov
Save
  • Allerup, P., H. Madsen, and F. Vejen, 1998: Estimating true precipitation in arctic areas. Nordic Hydrological Programme Rep. 44, 9 pp.

  • Allerup, P., H. Madsen, and F. Vejen, 2000: Correction of precipitation based on off-site weather information. Atmos. Res., 53, 231250.

    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., S. Ekholm, and W. B. Krabil, 2001: A new, high-resolution digital elevation model of Greenland fully validated with airborne altimetry data. J. Geophys. Res., 106, 67336745.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2006: Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J. Climate, 19, 27832800.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., Q.-S. Chen, Y. Li, and R. L. Cullather, 1999: Precipitation over Greenland and its relation to the North Atlantic Oscillation. J. Geophys. Res., 104, 22 10322 115.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304.

  • Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, doi:10.1038/nature04385.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang, 2009: Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys. Res. Lett., 36, L14801, doi:10.1029/2009GL038777.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, and M. K. Dubey, 2010: Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett., 37, L08703, doi:10.1029/2010GL042793.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., and W. S. B. Paterson, 2010: The Physics of Glaciers. 4th ed. Elsevier, 707 pp.

  • Dyurgerov, M. B., and M. F. Meier, 2005: Glaciers and the changing earth system: A 2004 snapshot. University of Colorado at Boulder INSTAAR Occasional Paper 58, 116 pp.

  • Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van den Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., 2007: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere, 1, 2140.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., E. Hanna, H. Gallee, P. Huybrechts, and M. Erpicum, 2008: Estimation of the Greenland ice sheet surface mass balance during 20th and 21st centuries. Cryosphere, 2, 117129.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., M. Tedesco, M. R. van den Broeke, and J. Ettema, 2011: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere, 5, 359375.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures. Nature, 320, 602607.

  • Gardner, A. S., and Coauthors, 2011: Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473, 357360, doi:10.1038/nature10089.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., P. Huybrechts, and T. Mote, 2002: Surface mass balance of the Greenland ice sheet from climate-analysis data and accumulation/runoff models. Ann. Glaciol., 35, 6772.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., P. Huybrechts, I. Janssens, J. Cappelen, K. Steffen, and A. Stephens, 2005: Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res., 110, D13108, doi:10.1029/2004JD005641.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland ice sheet: A response to global warming. J. Climate, 21, 331341.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. M. Jones, J. Cappelen, S. H. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2012: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol., doi:10.1002/joc.3475, in press.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hasholt, B., and Coauthors, 2008: Hydrology and transport of sediment and solutes at Zackenberg. High-Arctic Ecosystem Dynamics in a Changing Climate: Ten Years of Monitoring and Research at Zackenberg Research Station, Northeast Greenland, H. Meltofte et al., Eds., Advances in Ecological Research, Vol. 40, Academic Press, 111–149.

  • Hasholt, B., A. B. Mikkelsen, M. H. Nielsen, and M. A. D. Larsen, 2012: Observations of runoff and sediment and dissolved loads from the Greenland ice sheet at Kangerlussuaq, west Greenland, 2007 to 2010. Z. Geomorphol., in press.

  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72, 251298.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the Northern Atlantic Oscillation. J. Mar. Syst., 78, 2841.

    • Search Google Scholar
    • Export Citation
  • Jensen, L. M., and M. Rasch, 2010: Zackenberg Ecological Research operations, 15th annual report, 2009. Aarhus University National Environmental Research Institute Rep., 134 pp.

  • Joswiak, M., T. Yao, and D. Joswiak, 2011: Moving forward on glacier retreat. Eos, Trans. Amer. Geophys. Union, 92, 188, doi:10.1029/2011EO220006.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985.

  • Lewis, S. M., and L. C. Smith, 2009: Hydrological drainage of the Greenland ice sheet. Hydrol. Processes, 23, 20042011, doi:10.1002/hyp.7343.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34, 17051715.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and D. K. Hall, 1995: An energy-balance model of lake-ice evolution. J. Glaciol., 41, 373382.

  • Liston, G. E., and M. Sturm, 1998: A snow-transport model for complex terrain. J. Glaciol., 44, 498516.

  • Liston, G. E., and M. Sturm, 2002: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3, 646659.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and K. Elder, 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7, 12591276.

  • Liston, G. E., and K. Elder, 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and C. A. Hiemstra, 2011: The changing cryosphere: Pan-Arctic snow trends (1979–2009). J. Climate, 24, 56915712.

  • Liston, G. E., and S. H. Mernild, 2012: Greenland freshwater runoff. Part I: A runoff routing model for glaciated and nonglaciated landscapes (HydroFlow). J. Climate, 25, 59976014.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J.-G. Winther, O. Bruland, H. Elvehøy, and K. Sand, 1999: Below surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45, 273285.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., R. B. Haehnel, M. Sturm, C. A. Hiemstra, S. Berezovskaya, and R. D. Tabler, 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53, 241256.

    • Search Google Scholar
    • Export Citation
  • Marks, D., and J. Dozier, 1992: Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada, 2, Snow cover energy balance. Water Resour. Res., 28, 30433054.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and B. Hasholt, 2006: Climatic control on river discharge simulations, Mittivakkat Glacier catchment, Ammassalik Island, SE Greenland. Nord. Hydrol., 37 (4–5), 327346.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and G. E. Liston, 2010: The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, southeast Greenland. J. Appl. Meteor. Climatol., 49, 4767.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., B. Hasholt, and G. E. Liston, 2006a: Water flow through Mittivakkat Glacier, Ammassalik Island, SE Greenland. Danish J. Geogr., 106, 2543.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, B. Hasholt, and N. T. Knudsen, 2006b: Snow-distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland. J. Hydrometeor., 7, 808824.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., B. Hasholt, and G. E. Liston, 2008a: Climatic control on river discharge simulations, Zackenberg River drainage basin, northeast Greenland. Hydrol. Processes, 22, 19321948, doi:10.1002/hyp.6777.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, and B. Hasholt, 2008b: East Greenland freshwater runoff to the Greenland-Iceland-Norwegian Seas 1999–2004 and 2071–2100. Hydrol. Processes, 22, 45714586, doi:10.1002/hyp.7061.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, and K. Steffen, 2008c: Surface melt area and water balance modeling on the Greenland ice sheet 1995–2005. J. Hydrometeor., 9, 11911211.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, K. Steffen, E. Hanna, and J. H. Christensen, 2009: Greenland ice sheet surface mass-balance modeling and freshwater flux for 2007, and in a 1995–2007 perspective. Hydrol. Processes, 23, 24702484, doi:10.1002/hyp.7354.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, and J. H. Christensen, 2010: Greenland ice sheet surface mass-balance modeling in a 131-yr perspective, 1950–2080. J. Hydrometeor., 11, 325.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, J. H. Christensen, M. Stendel, and B. Hasholt, 2011a: Surface mass-balance and runoff modeling using HIRHAM4 RCM at Kangerlussuaq (Søndre Strømfjord), west Greenland, 1950–2080. J. Climate, 24, 609623.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., T. Mote, and G. E. Liston, 2011b: Greenland ice sheet surface melt extent and trends, 1960–2010. J. Glaciol., 57, 621628.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., J. K. Malmros, N. T. Knudsen, and J. C. Yde, 2012a: Multi-decadal marine- and land-terminating glacier retreat in the Ammassalik region, southeast Greenland. Cyrosphere, 6, 625639.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., M.-S. Seidenkrantz, P. Chylek, G. E. Liston, and B. Hasholt, 2012b: Climate-driven fluctuations in freshwater to Sermilik Fjord, east Greenland, during the last 4000 years. Holocene, 22, 155164, doi:10.1177/0959683611431215.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, W. T., J. T. Harper, and S. O’Neel, 2008: Kinematic constrains on glacier contribution of 21st-century sea-level rise. Science, 321, 13401343.

    • Search Google Scholar
    • Export Citation
  • Radić, V., and R. Hock, 2010: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res., 115, F01010, doi:10.1029/2009JF001373.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378, 145149.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Rennermalm, A. K., L. C. Smith, V. W. Chu, R. R. Forster, J. E. Box, and B. Hagedorn, 2012: Proglacial river stage, discharge, and temperature datasets from the Akuliarusiarsuup Kuua River northern tributary, southwest Greenland, 2008–2011. Earth Syst. Sci. Data, 4, 112, doi:10.5194/essd-4-1-2012.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986990.

  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723.

  • Serreze, M. C., and Coauthors, 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159207.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • van den Broeke, M. R., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986.

  • Weijer, W., M. E. Maltrud, M. W. Hecht, H. A. Dijkstra, and M. A. Kliphuis, 2012: Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophys. Res. Lett., 39, L09606, doi:10.1029/2012GL051611.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 784 221 18
PDF Downloads 343 80 9