• Bates, S. C., , B. Fox-Kemper, , S. R. Jayne, , W. G. Large, , S. Stevenson, , and S. G. Yeager, 2012: Mean biases, variability, and trends in air–sea fluxes and sea surface temperature in the CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Béranger, K., , K. Viau, , B. Barnier, , E. Garnier, , J. M. Molines, , L. Siefridt, , and G. Barnier, 2000: An atlas of climatic estimates of air-sea fluxes. MEOM, Laboratoire des Ecoulements Geophysiques et Industriels, Institute de Mechanique de Grenoble, 19 pp.

  • Bindoff, N., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

  • Bosilovich, M., , F. Robertson, , and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739.

  • Conkright, M., and Coauthors, 2002: Introduction. Vol. 1, World Ocean Database 2001, NOAA Atlas NESDIS 42, 167 pp.

  • Danabasoglu, G., , and P. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 5974.

  • Doney, S., , W. Large, , and F. Bryan, 1998: Surface ocean fluxes and water-mass transformation rates in the coupled NCAR Climate System Model. J. Climate, 11, 14201441.

    • Search Google Scholar
    • Export Citation
  • Folland, C., and Coauthors, 2001: Observed climate variability and change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 99–192.

  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-Ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., , and M. Carson, 2007: Is the World Ocean warming? Upper-ocean temperature trends: 1950–2000. J. Phys. Oceanogr., 37, 174187.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Hurrell, J., , and K. Trenberth, 1999: Global sea surface temperature analysis: Multiple problems and their implications for climate analysis, modeling, and reanalysis. Bull. Amer. Meteor. Soc., 80, 26612678.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., , J. Hack, , D. Shea, , J. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al. Eds., Cambridge University Press, 337–383.

  • Le Treut, H., , R. Somerville, , U. Cubasch, , Y. Ding, , C. Mauritzen, , A. Mokssit, , T. Peterson, , and M. Prather, 2007: Historical overview of climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al. Eds., Cambridge University Press, 94–128.

  • Levitus, S., , J. I. Antonov, , T. P. Boyer, , and C. Stephens, 2000: Warming of the World Ocean. Science, 287, 22252229.

  • Levitus, S., , J. I. Antonov, , and T. P. Boyer, 2005: Warming of the World Ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592.

    • Search Google Scholar
    • Export Citation
  • Lind, R. J., , and K. B. Katsaros, 1986: Radiation measurements and model results from R/V Oceanographer during STREX 1980. J. Geophys. Res., 91 (D12), 13 30813 314.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al. Eds., Cambridge University Press, 747–845.

  • Pachauri, R. K., , and A. Reisinger, Eds., 2007: Climate Change 2007: Synthesis Report. Cambridge University Press, 104 pp.

  • Rayner, N. A, ., D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Powell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., , N. Rayner, , T. Smith, , D. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Robson, J., , R. Sutton, , K. Lohmann, , D. Smith, , and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , S. Riser, , R. Davis, , and Y. Desaubies, 2004: Autonomous profiling floats: Workhorse for broad-scale ocean observations. J. Mar. Technol. Soc., 38, 3139.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stephens, G. L., , M. Ward, , P. W. Stackhouse Jr., , T. L’Ecuyer, , S. Vato, , and D.S. Hendersen, 2012: The global character of the flux of downward longwave radiation. J. Climate, 25, 23292340.

    • Search Google Scholar
    • Export Citation
  • Stevenson, J. W., , and P. P. Niiler, 1983: Upper ocean heat budget during the Hawaii-to-Tahiti Shuttle Experiment. J. Phys. Oceanogr., 13, 18941907.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., Ed., 2000: Intercomparison and validation of ocean-atmosphere energy flux fields. Final Rep. of the Joint WCRP/SCOR Working Group on Air-Sea Fluxes WCRP-112, WMO/TD-1036, 306 pp.

  • Trenberth, K., , J. Fasullo, , and L. Smith, 2005: Trends and variability in column-integrated atmosphere water vapor. Climate Dyn., 24, 741758.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Trenberth, K., , J. Fasullo, , and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Yeager, S., , A. Karspeck, , G. Danabasoglu, , J. Tribbia, , and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mishchenko, 2004: Calculation of radiative flux profiles from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 144 16
PDF Downloads 69 69 5

On the Observed Trends and Changes in Global Sea Surface Temperature and Air–Sea Heat Fluxes (1984–2006)

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Global satellite observations show the sea surface temperature (SST) increasing since the 1970s in all ocean basins, while the net air–sea heat flux Q decreases. Over the period 1984–2006 the global changes are 0.28°C in SST and −9.1 W m−2 in Q, giving an effective air–sea coupling coefficient of −32 W m−2 °C−1. The global response in Q expected from SST alone is determined to be −12.9 W m−2, and the global distribution of the associated coupling coefficient is shown. Typically, about one-half (6.8 W m−2) of this SST effect on heat flux is compensated by changes in the overlying near-surface atmosphere. Slab Ocean Models (SOMs) assume that ocean heating processes do not change from year to year so that a constant annual heat flux would maintain a linear trend in annual SST. However, the necessary 6.1 W m−2 increase is not found in the downwelling longwave and shortwave fluxes, which combined show a −3 W m−2 decrease. The SOM assumptions are revisited to determine the most likely source of the inconsistency with observations of (−12.9 + 6.8 − 3) = −9.1 W m−2. The indirect inference is that diminished ocean cooling due to vertical ocean processes played an important role in sustaining the observed positive trend in global SST from 1984 through 2006, despite the decrease in global surface heat flux. A similar situation is found in the individual basins, though magnitudes differ. A conclusion is that natural variability, rather than long-term climate change, dominates the SST and heat flux changes over this 23-yr period. On shorter time scales the relationship between SST and heat flux exhibits a variety of behaviors.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: W. G. Large, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: wily@ncar.ucar.edu

Abstract

Global satellite observations show the sea surface temperature (SST) increasing since the 1970s in all ocean basins, while the net air–sea heat flux Q decreases. Over the period 1984–2006 the global changes are 0.28°C in SST and −9.1 W m−2 in Q, giving an effective air–sea coupling coefficient of −32 W m−2 °C−1. The global response in Q expected from SST alone is determined to be −12.9 W m−2, and the global distribution of the associated coupling coefficient is shown. Typically, about one-half (6.8 W m−2) of this SST effect on heat flux is compensated by changes in the overlying near-surface atmosphere. Slab Ocean Models (SOMs) assume that ocean heating processes do not change from year to year so that a constant annual heat flux would maintain a linear trend in annual SST. However, the necessary 6.1 W m−2 increase is not found in the downwelling longwave and shortwave fluxes, which combined show a −3 W m−2 decrease. The SOM assumptions are revisited to determine the most likely source of the inconsistency with observations of (−12.9 + 6.8 − 3) = −9.1 W m−2. The indirect inference is that diminished ocean cooling due to vertical ocean processes played an important role in sustaining the observed positive trend in global SST from 1984 through 2006, despite the decrease in global surface heat flux. A similar situation is found in the individual basins, though magnitudes differ. A conclusion is that natural variability, rather than long-term climate change, dominates the SST and heat flux changes over this 23-yr period. On shorter time scales the relationship between SST and heat flux exhibits a variety of behaviors.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: W. G. Large, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: wily@ncar.ucar.edu
Save