• Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264.

    • Search Google Scholar
    • Export Citation
  • Chahine, M., , C. Barnet, , E. T. Olsen, , L. Chen, , and E. Maddy, 2005: On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys. Res. Lett., 32, L22803, doi:10.1029/2005GL024165.

    • Search Google Scholar
    • Export Citation
  • Chahine, M., and Coauthors, 2008: Satellite remote sounding of mid-tropospheric CO2. Geophys. Res. Lett., 35, L17807, doi:10.1029/2008GL035022.

    • Search Google Scholar
    • Export Citation
  • Chédin, A., and Coauthors, 2003: The feasibility of monitoring CO2 from high-resolution infrared sounders. J. Geophys. Res., 108, 4064, doi:10.1029/2001JD001443.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , F.-M. Breon, , and P. J. Rayner, 2007: Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework. J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375.

    • Search Google Scholar
    • Export Citation
  • Crevoisier, C., , A. Chedin, , and N. A. Scott, 2003: AIRS channel selection for CO2 and other trace gas retrievals. Quart. J. Roy. Meteor. Soc., 129, 27192740.

    • Search Google Scholar
    • Export Citation
  • Crisp, D., and Coauthors, 2004: The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res., 34, 700709.

  • Dargaville, R. J., , R. M. Law, , and F. Pribac, 2000: Implications of interannual variability in atmospheric circulation on modelled CO2 concentrations and source estimates. Global Biogeochem. Cycles, 14, 931943.

    • Search Google Scholar
    • Export Citation
  • Denning, A. S., , I. Y. Fung, , and D. Randall, 1995: Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature, 386, 240243.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , and M. Ghil, 1998: Seasonal and interannual variations of atmospheric CO2 and climate. Tellus, 50B, 124.

  • Engelen, R. J., , E. Andersson, , F. Chevallier, , A. Hollingsworth, , M. Matricardi, , A. P. McNally, , J.-N. Thépaut, , and P. D. Watts, 2004: Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results. J. Geophys. Res., 109, D19309, doi:10.1029/2004JD004777.

    • Search Google Scholar
    • Export Citation
  • Feng, L., , P. I. Palmer, , Y. Yang, , R. M. Yantosca, , S. R. Kawa, , J.-D. Paris, , H. Matsueda, , and T. Machida, 2011: Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys., 11, 27892803, doi:10.5194/acp-11-2789-2011.

    • Search Google Scholar
    • Export Citation
  • Fung, I., , K. Prentice, , E. Matthews, , J. Lerner, , and G. Russell, 1983: Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res., 88 (C2), 12811294.

    • Search Google Scholar
    • Export Citation
  • Garcia, D., 2010: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal., 54, 11671178.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., , and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., 1960: The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus, 12, 200203.

  • Lintner, B. R., 2002: Characterizing global CO2 interannual variability with empirical orthogonal function/principal component (EOF/PC) analysis. Geophys. Res. Lett., 29, 1921, doi:10.1029/2001GL014419.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., , A. B. Gilliland, , and I. Y. Fung, 2004: Mechanisms of convection-induced modulation of passive tracer interhemispheric transport interannual variability. J. Geophys. Res., 109, D13102, doi:10.1029/2003JD004306.

    • Search Google Scholar
    • Export Citation
  • Mahlman, J. D., 1997: Dynamics of transport processes in the upper troposphere. Science, 276, 10791083.

  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Parazoo, N. C., , A. S. Denning, , J. A. Berry, , A. Wolf, , D. A. Randall, , S. R. Kawa, , O. Pauluis, , and S. C. Doney, 2011: Moist synoptic transport of CO2 along the mid-latitude storm track. Geophys. Res. Lett., 38, L09804, doi:10.1029/2011GL047238.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., , and C. D. Mobley, 1988: Principal Component Analyses in Meteorology and Oceanography. Elsevier, 425 pp.

  • Stephens, B., and Coauthors, 2007: Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 17321735.

    • Search Google Scholar
    • Export Citation
  • Strow, L. L., , and S. E. Hannon, 2008: A 4-year zonal climatology of lower tropospheric CO2 derived from ocean-only Atmospheric Infrared Sounder observations. J. Geophys. Res., 113, D18302, doi:10.1029/2007JD009713.

    • Search Google Scholar
    • Export Citation
  • Taguchi, S., , S. Murayama, , and K. Higuchi, 2003: Sensitivity of inter-annual variation of CO2 seasonal cycle at Mauna Loa to atmospheric transport. Tellus, 55B, 547554.

    • Search Google Scholar
    • Export Citation
  • Tans, P. P., , I. Y. Fung, , and T. Takahashi, 1990: Observational constraints on the global atmospheric CO2 budget. Science, 247, 14311438.

    • Search Google Scholar
    • Export Citation
  • Tiwari, Y. K., and Coauthors, 2006: Comparing CO2 retrieved from Atmospheric Infrared Sounder with model predictions: Implications for constraining surface fluxes and lower-to-upper troposphere transport. J. Geophys. Res., 111, D17106, doi:10.1029/2005JD006681.

    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., and Coauthors, 2011: HIAPER Pole-to Pole Observations (HIPPO) fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. Roy. Soc. London, 369A, 20732086.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., , G. C. Toon, , J. S. Margolis, , and P. O. Wennberg, 2002: Atmospheric CO2 retrieved from ground-based near IR solar spectra. Geophys. Res. Lett., 29, 1339, doi:10.1029/2001GL014537.

    • Search Google Scholar
    • Export Citation
  • Yokota, T., , Y. Yoshida, , N. Eguchi, , Y. Ota, , T. Tanaka, , H. Watanabe, , and S. Maksyutov, 2009: Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. SOLA, 5, 160163.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 9
PDF Downloads 30 30 6

Patterns of CO2 Variability from Global Satellite Data

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The authors present an analysis of the global midtropospheric CO2 retrieved for all-sky (clear and cloudy) conditions from measurements by the Atmospheric Infrared Radiation Sounder on board the Aqua satellite in 2003–09. The global data coverage allows the identification of the set of CO2 spatial patterns and their time variability by applying principal component analysis and empirical mode decomposition. The first, dominant pattern represents 93% of the variability and exhibits the linear trend of 2 ± 0.2 ppm yr−1, as well as annual and interannual dependencies. The single-site record of CO2 at Mauna Loa compares well with variability of this pattern. The first principal component is phase shifted relative to the Southern Oscillation, indicating a causative relationship between the atmospheric CO2 and ENSO. The higher-order patterns show regional details of CO2 distribution and display the semiannual oscillation. The CO2 distributions are compared with the distribution of two major characteristics of air transport: the vertical velocity and potential temperature surfaces at the same height. In agreement with modeling, CO2 concentration closely traces the potential temperature surfaces (isentropes) in middle and high latitudes. However, its vertical transport in the tropics, where these surfaces are mostly horizontal, is suppressed. The results are in agreement with the previous results on annual and interannual CO2 time variability obtained by using the network flask data. This knowledge of the global CO2 spatial patterns can be useful in climate analyses and potentially in the challenging task of connecting CO2 sources and sinks with its distribution in the atmosphere.

Corresponding author address: Alexander Ruzmaikin, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. E-mail: alexander.ruzmaikin@jpl.nasa.gov

Abstract

The authors present an analysis of the global midtropospheric CO2 retrieved for all-sky (clear and cloudy) conditions from measurements by the Atmospheric Infrared Radiation Sounder on board the Aqua satellite in 2003–09. The global data coverage allows the identification of the set of CO2 spatial patterns and their time variability by applying principal component analysis and empirical mode decomposition. The first, dominant pattern represents 93% of the variability and exhibits the linear trend of 2 ± 0.2 ppm yr−1, as well as annual and interannual dependencies. The single-site record of CO2 at Mauna Loa compares well with variability of this pattern. The first principal component is phase shifted relative to the Southern Oscillation, indicating a causative relationship between the atmospheric CO2 and ENSO. The higher-order patterns show regional details of CO2 distribution and display the semiannual oscillation. The CO2 distributions are compared with the distribution of two major characteristics of air transport: the vertical velocity and potential temperature surfaces at the same height. In agreement with modeling, CO2 concentration closely traces the potential temperature surfaces (isentropes) in middle and high latitudes. However, its vertical transport in the tropics, where these surfaces are mostly horizontal, is suppressed. The results are in agreement with the previous results on annual and interannual CO2 time variability obtained by using the network flask data. This knowledge of the global CO2 spatial patterns can be useful in climate analyses and potentially in the challenging task of connecting CO2 sources and sinks with its distribution in the atmosphere.

Corresponding author address: Alexander Ruzmaikin, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. E-mail: alexander.ruzmaikin@jpl.nasa.gov
Save