• Afiesimama, E. A., , J. S. Pal, , B. J. Abiodun, , W. J. Gutowski, , and A. Adedoyin, 2006: Simulation of West African monsoon using RegCM3. Part I: Model validation and interannual variability. Theor. Appl. Climatol., 86, 2327.

    • Search Google Scholar
    • Export Citation
  • Alexandru, A., , R. de Elia, , R. Laprise, , L. Separovic, , and S. Biner, 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 16661686.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., , and F. H. M. Semazzi, 2007: Variability of East African rainfall based on multiyear RegCM3 simulations. Int. J. Climatol., 27, 357371.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., 2008: Stability analysis for linear discretisations of the advection equation with Runge–Kutta time integration. J. Comput. Phys., 227, 66386659.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., , and J.-P. Schulz, 2004: Prognostic precipitation in the Lokal Modell (LM) of DWD. COSMO Newsletter, No. 4, DWD, Offenbach, Germany, 177–180.

  • Baldauf, M., , A. Seifert, , J. Förstner, , D. Majewski, , M. Raschendorfer, , and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , E. Bazile, , F. Guichard, , P. Mascart, , and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869886.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., , J. Côté, , and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finit-element model. Mon. Wea. Rev., 117, 17261750.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 21082121.

  • Buzzi, M., , M. W. Rotach, , M. Raschendorfer, , and A. A. M. Holtslag, 2011: Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteor. Z., 20, 335350.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , T. R. Carter, , M. Rummukainen, , and G. Amanatidis, 2007: Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81, 16.

    • Search Google Scholar
    • Export Citation
  • Christensen, O. B., , M. Drews, , and J. H. Christensen, 2006: The HIRHAM regional climate model version 5. DMI Tech. Rep. 06-17, 22 pp.

  • Cook, K. H., , and E. K. Vizy, 2006: Coupled model simulations of the West African monsoon system: Twentieth- and twenty-first-century simulations. J. Climate, 19, 36813703.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., , P. Bougeault, , and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128.

  • Dai, A., , and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , F. Giorgi, , and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles over the contiguous United States. J. Geophys. Res., 104 (D6), 63776402.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , X. Lin, , and K.-L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744.

    • Search Google Scholar
    • Export Citation
  • da Rocha, R. P., , C. A. Morales, , S. V. Cuadra, , and T. Ambrizzi, 2009: Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations. J. Geophys. Res., 114, D10108, doi:10.1029/2008JD010212.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82, 2348.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2010: Regional climate simulation with a mosaic of RCMs. Meteor. Z., 19, 259266.

  • Dickinson, R. E., , A. Henderson-Sellers, , and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. COSMO Rep. LM_F90 4.20, 154 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • Douville, H. S., , S. Planton, , J.-F. Royer, , D. B. Stephenson, , S. Tyteca, , L. Kergoat, , S. Lafont, , and R. A. Betts, 2000: Importance of vegetation feedbacks in doubled-CO2 climate experiments. J. Geophys. Res., 105 (D11), 14 84114 861.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., and Coauthors, 2010: The WAMME regional model intercomparison study. Climate Dyn., 35, 175192.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2007: IFS documentation—Cy31r1: Operational implementation 12 September 2006; Part IV: Physical processes. ECMWF Rep., 155 pp. [Available online at http://www.ecmwf.int/research/ifsdocs/CY31r1/PHYSICS/IFSPart4.pdf.]

  • Edwards, J. M., , and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., , M. J. Best, , R. A. Betts, , and P. M. Cox, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530543.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., , C. J. Vörösmarty, , J. O. Roads, , and C. J. Willmott, 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294304.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., , and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M., , and M. Wild, 1995: The water vapour continuum and its representation in ECHAM4. MPI Rep. 162, 38 pp.

  • Giorgi, F., , C. Jones, , and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , and S. Allen, 1991: The effect of convective downdraughts upon NWP and climate simulations. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 122–123.

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787.

  • Gruber, A., , X. Su, , M. Kanamitsu, , and J. Schemm, 2000: The comparison of two merged rain gauge–satellite precipitation datasets. Bull. Amer. Meteor. Soc., 81, 26312644.

    • Search Google Scholar
    • Export Citation
  • Haensler, A., , S. Hagemann, , and D. Jacob, 2010: Dynamical downscaling of ERA40 reanalysis data over southern Africa: Added value in the simulation of the seasonal rainfall characteristics. Int. J. Climatol., 31, 23382349, doi:10.1002/joc.2242.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., 2002: An improved land surface parameter dataset for global and regional climate models. MPI Rep. 336, 21 pp.

  • Herzog, H.-J., , G. Vogel, , and U. Schubert, 2002: LLM—A nonhydrostatic model applied to high-resolving simulations of turbulent fluxes over heterogeneous terrain. Theor. Appl. Climatol., 73, 6786.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., , and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 28212873.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , E. I. F. de Bruijn, , and H.-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , and D. T. Bolvin, 2011: TRMM and other data precipitation data set documentation. NASA GSFC Rep., 29 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Huffman, G. J., , R. F. Adler, , M. M. Morrissey, , D. T. Bolvin, , S. Curtis, , R. Joyce, , B. McGavock, , and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., 2001: A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteor. Atmos. Phys., 77, 6173.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: Design of the experiments and model performance. Climatic Change, 81, 3152.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., 2009: A comparison of Indian and African monsoon variability at different time scales. C. R. Geosci., 341, 575590.

  • Jeong, J.-H., , A. Walther, , G. Nikulin, , D. Chen, , and C. Jones, 2011: Diurnal cycle of precipitation amount and frequency in Sweden: Observation versus model simulation. Tellus, 63A, 664674, doi:10.1111/j.1600-0870.2011.00517.x.

    • Search Google Scholar
    • Export Citation
  • Jones, C. G., , F. Giorgi, , and G. Asrar, 2011: The Coordinated Regional Downscaling Experiment: CORDEX; An international downscaling link to CMIP5. CLIVAR Exchanges, International CLIVAR Project Office, No. 56, Southampton, United Kingdom, 34–40. [Available online at http://www.clivar.org/sites/default/files/imported/publications/exchanges/Exchanges_56.pdf.]

  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., , M. Noguer, , D. Hassel, , D. Hudson, , S. Wilson, , G. Jenkins, , and J. Mitchell, 2004: Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre Handbook, 40 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/6/5/PRECIS_Handbook.pdf.]

  • Joyce, R. J., , J. E. Janowiak, , P. A. Arkin, , and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , B. P. Briegleb, , D. L. Williamson, , and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp.

  • Kikuchi, K., , and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696.

  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., , and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127.

    • Search Google Scholar
    • Export Citation
  • Li, J., , and H. W. Barker, 2005: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci., 62, 286309.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., , L. Li, , A. Dai, , and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12, 557572.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Lynn, B. H., , R. Healy, , and L. M. Druyan, 2007: An analysis of the potential for extreme temperature change based on observations and model simulations. J. Climate, 20, 15391554.

    • Search Google Scholar
    • Export Citation
  • McGarry, M. M., , and R. J. Reed, 1978: Diurnal variations in convective activity and precipitation during phases II and III of GATE. Mon. Wea. Rev., 106, 101113.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., , W. Gutowski, , R. Jones, , R. Leung, , S. McGinnis, , A. Nunes, , and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Menéndez, C. G., , M. de Castro, , A. Sorensson, , and J.-P. Boulanger, 2010: CLARIS project: Towards climate downscaling in South America. Meteor. Z., 19, 357362.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., , and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., 1990: Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev., 118, 847873.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., , L. Smith, , and Y. Fouquart, 1986: Pressure and temperature dependence of the absorption in longwave radiation parametrizations. Beitr. Phys. Atmos., 59, 455469.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global tmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Paeth, H., , K. Born, , R. Podzun, , and D. Jacob, 2005: Regional dynamical downscaling over West Africa: Model evaluation and comparison of wet and dry years. Meteor. Z., 14, 349367.

    • Search Google Scholar
    • Export Citation
  • Paeth, H., and Coauthors, 2011: Progress in regional downscaling of West African precipitation. Atmos. Sci. Lett., 12, 7582.

  • Pal, J. S., , E. E. Small, , and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res., 105 (D24), 29 57929 594.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., , and C. H. Cook, 2010: Northern African climate at the end of the twenty-first century: An integrated application of regional and global climate models. Climate Dyn., 35, 193212.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., , Y. Zhao, , C. Akoshile, , J. Janowiak, , and P. Arkin, 2006: Diurnal and seasonal variability of rainfall in the sub-Sahel as seen from observations, satellites and a numerical model. Geophys. Res. Lett., 33, L07806, doi:10.1029/2005GL025192.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., , and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 15871614.

    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., , F. Giorgi, , A. Kaginalkar, , and S. Cozzini, 2009: Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model. Climate Dyn., 33, 119139.

    • Search Google Scholar
    • Export Citation
  • Rechid, D., , T. J. Raddatz, , and D. Jacob, 2009: Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor. Appl. Climatol., 95, 245255.

    • Search Google Scholar
    • Export Citation
  • Ricard, J. L., , and J. F. Royer, 1993: A statistical cloud scheme for use in an AGCM. Ann. Geophys., 11, 10951115.

  • Ritter, B., , and J.-F. Geleyn, 1992: A comprehensive radiation scheme of numerical weather prediction with potential application to climate simulations. Mon. Wea. Rev., 120, 303325.

    • Search Google Scholar
    • Export Citation
  • Rockel, B., , A. Will, , and A. Hense, 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347248.

  • Rudolf, B., , A. Becker, , U. Schneider, , A. Meyer-Christoffer, , and M. Ziese, 2010: The new “GPCC full data reanalysis version 5” providing high-quality gridded monthly precipitation data for the global land-surface is public available since December 2010. GPCC Status Rep., 7 pp.

  • Ruti, P. M., and Coauthors, 2011: The West African climate system: A review of the AMMA model inter-comparison initiatives. Atmos. Sci. Lett., 12, 116122.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., , S. Gollvik, , and A. Ullerstig, 2006: The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Rep. Met. 122, 25 pp.

  • Samuelsson, P., and Coauthors, 2011: The Rossby Centre regional climate model RCA3: Model description and performance. Tellus, 63A, 423.

    • Search Google Scholar
    • Export Citation
  • Sass, B. H., , L. Rontu, , H. Savijärvi, , and P. Räisänen, 1994: HIRLAM-2 radiation scheme: Documentation and tests. SMHI HIRLAM Tech. Rep. 16, 43 pp.

  • Savijärvi, H., 1990: A fast radiation scheme for mesoscale model and short-range forecast models. J. Appl. Meteor., 29, 437447.

  • Schulz, J.-P., , L. Dümenil, , J. Polcher, , C. A. Schlosser, , and Y. Xue, 1998: Land surface energy and moisture fluxes: Comparing three models. J. Appl. Meteor., 37, 288307.

    • Search Google Scholar
    • Export Citation
  • Shin, D. W., , S. Cocke, , and T. E. LaRow, 2007: Diurnal cycle of precipitation in a climate model. J. Geophys. Res., 112, D13109, doi:10.1029/2006JD008333.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Smirnova, T. G., , J. M. Brown, , S. G. Benjamin, , and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105 (D3), 40774086.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460.

    • Search Google Scholar
    • Export Citation
  • Smith, S. W., 2002: Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes, 672 pp.

  • Sultan, B., , and S. Janicot, 2000: Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett., 27, 33533356.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., , E. Berge, , and J. E. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., , A. T. Gaye, , J. S. Pal, , G. S. Jenkins, , and X. Q. Bi, 2009: High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor. Appl. Climatol., 98, 293314.

    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., , E. Coppola, , L. Mariotti, , F. Giorgi, , P. M. Ruti, , A. Dell’Aquila, , and X. Bi, 2010: Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-Interim reanalysis. Climate Dyn., 35, 231247.

    • Search Google Scholar
    • Export Citation
  • Tadross, M. A. & , W. J. Gutowski Jr., B. C. Hewitson, , C. Jack, , and M. New, 2006: MM5 simulations of interannual change and the diurnal cycle of southern African regional climate. Theor. Appl. Climatol., 86, 6380.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061.

  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942.

    • Search Google Scholar
    • Export Citation
  • van der Linden, P., , and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impacts at seasonal, decadal and centennial timescales; Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Rep., 160 pp.

  • van Meijgaard, E., , L. H. van Ulft, , W. J. van den Berg, , F. C. Bosveld, , B. J. J. M. van den Hurk, , G. Lenderink, , and A. P. Siebesma, 2008: The KNMI regional atmospheric climate model RACMO version 2.1. KNMI Tech. Rep. TR-302, 43 pp.

  • Verseghy, D. L., 2000: The Canadian Land Surface Scheme (CLASS): Its history and future. Atmos.–Ocean, 38, 113.

  • von Storch, H., , H. Langenberg, , and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. A., 1992: Vertical diffusion. NWP Meteorological Office Unified Model Documentation Paper 21, version 4.0, 4 pp.

  • Xi, P., , B. Rudolf, , U. Schneider, , and P. A. Arkin, 1996: Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J. Geophys. Res., 101 (D14), 19 02319 034.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2010: Intercomparison and analyses of the climatology of the West African monsoon in the West African Monsoon Modeling and Evaluation Project (WAMME) first model intercomparison experiment. Climate Dyn., 35, 327.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., , F. A. Furuzawa, , A. Higuchi, , and K. Nakamura, 2008: Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS. J. Climate, 21, 40114028.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Yang, S., , and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226.

    • Search Google Scholar
    • Export Citation
  • Yin, X., , and A. Gruber, 2010: Validation of the abrupt change in GPCP precipitation in the Congo River basin. Int. J. Climatol., 30, 110119.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., , D. Caya, , J. Côté, , B. Dugas, , C. Jones, , R. Laprise, , K. Winger, , and L.-P. Caron, 2008: The next Canadian Regional Climate Model. Phys. Canada, 64, 7583.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 434 434 73
PDF Downloads 378 378 61

Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations

View More View Less
  • 1 Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
  • | 2 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
  • | 3 World Climate Research Programme, Geneva, Switzerland
  • | 4 Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • | 5 University of Cape Town, Cape Town, South Africa
  • | 6 Danmarks Meteorologiske Institut, Copenhagen, Danmark
  • | 7 Centre National de Recherches Météorologiques, Météo-France, Toulouse, France
  • | 8 Universidad de Cantabria, Santander, Spain
  • | 9 Climate Service Center, Helmholtz-Zentrum Geesthacht, Hamburg, Germany
  • | 10 Koninklijk Nederlands Meteorologisch Instituut, De Bilt, Netherlands
  • | 11 Université du Québec à Montréal, Montréal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

An ensemble of regional climate simulations is analyzed to evaluate the ability of 10 regional climate models (RCMs) and their ensemble average to simulate precipitation over Africa. All RCMs use a similar domain and spatial resolution of ~50 km and are driven by the ECMWF Interim Re-Analysis (ERA-Interim) (1989–2008). They constitute the first set of simulations in the Coordinated Regional Downscaling Experiment in Africa (CORDEX-Africa) project. Simulated precipitation is evaluated at a range of time scales, including seasonal means, and annual and diurnal cycles, against a number of detailed observational datasets. All RCMs simulate the seasonal mean and annual cycle quite accurately, although individual models can exhibit significant biases in some subregions and seasons. The multimodel average generally outperforms any individual simulation, showing biases of similar magnitude to differences across a number of observational datasets. Moreover, many of the RCMs significantly improve the precipitation climate compared to that from their boundary condition dataset, that is, ERA-Interim. A common problem in the majority of the RCMs is that precipitation is triggered too early during the diurnal cycle, although a small subset of models does have a reasonable representation of the phase of the diurnal cycle. The systematic bias in the diurnal cycle is not improved when the ensemble mean is considered. Based on this performance analysis, it is assessed that the present set of RCMs can be used to provide useful information on climate projections over Africa.

Corresponding author address: Grigory Nikulin, Rossby Centre, Swedish Meteorological and Hydrological Institute, Folkborgsvägen 1, S-60176 Norrköping, Sweden. E-mail: grigory.nikulin@smhi.se

Abstract

An ensemble of regional climate simulations is analyzed to evaluate the ability of 10 regional climate models (RCMs) and their ensemble average to simulate precipitation over Africa. All RCMs use a similar domain and spatial resolution of ~50 km and are driven by the ECMWF Interim Re-Analysis (ERA-Interim) (1989–2008). They constitute the first set of simulations in the Coordinated Regional Downscaling Experiment in Africa (CORDEX-Africa) project. Simulated precipitation is evaluated at a range of time scales, including seasonal means, and annual and diurnal cycles, against a number of detailed observational datasets. All RCMs simulate the seasonal mean and annual cycle quite accurately, although individual models can exhibit significant biases in some subregions and seasons. The multimodel average generally outperforms any individual simulation, showing biases of similar magnitude to differences across a number of observational datasets. Moreover, many of the RCMs significantly improve the precipitation climate compared to that from their boundary condition dataset, that is, ERA-Interim. A common problem in the majority of the RCMs is that precipitation is triggered too early during the diurnal cycle, although a small subset of models does have a reasonable representation of the phase of the diurnal cycle. The systematic bias in the diurnal cycle is not improved when the ensemble mean is considered. Based on this performance analysis, it is assessed that the present set of RCMs can be used to provide useful information on climate projections over Africa.

Corresponding author address: Grigory Nikulin, Rossby Centre, Swedish Meteorological and Hydrological Institute, Folkborgsvägen 1, S-60176 Norrköping, Sweden. E-mail: grigory.nikulin@smhi.se
Save