• Aksoy, A., , F. Zhang, , and J. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134, 29512970.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642.

  • Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99111.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61, 7283.

  • Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 41864198.

  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., , and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521473.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., , T. Hoar, , K. Raeder, , H. Liu, , N. Collins, , R. Torn, , and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333.

  • Arellano, A. F., and Coauthors, 2007: Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission. Atmos. Chem. Phys., 7, 56955710.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., , P. L. Houtekamer, , C. Charette, , H. L. Mitchell, , and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 19021921.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , P. J. van Leeuwen, , and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.

  • Danabasoglu, G., , S. C. Bates, , B. P. Briegleb, , S. R. Jayne, , M. Jochum, , W. G. Large, , S. Peacock, , and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., , and X. Yang, 2010: State and parameter estimation in stochastic dynamical models. Physica D, 239, 17811788.

  • Deser, C., , R. A. Tomas, , and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., , P. Bauer, , and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 37853798.

    • Search Google Scholar
    • Export Citation
  • Evans, K. J., , P. H. Lauritzen, , S. Mishra, , R. B. Neale, , M. A. Taylor, , and J. J. Tribbia, 2012: AMIP simulation with the CAM4 spectral element dynamical Core. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control Syst., 29, 83104, doi:10.1109/MCS.2009.932223.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., , and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-Ice Reference Experiments (CORES). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., , and D. Rostkier-Edelstein, 2007: PBL state estimation with surface observations, a column model, and an ensemble filter. Mon. Wea. Rev., 135, 29582972.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , H. L. Mitchell, , and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kay, J. E., , and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , T. L’Ecuyer, , A. Gettelman, , G. Stephens, , and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , K. Raeder, , A. Gettelman, , and J. Anderson, 2011: The boundary layer response to recent Arctic sea ice loss and implications for high-latitude climate feedbacks. J. Climate, 24, 428447.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. Hack, , G. B. Bonan, , B. A. Boville, , B. P. Briegleb, , D. L. Williamson, , and P. J. Rasch, 1996: Dynamics. Description of the NCAR Community Climate Model (CCM3), NCAR Tech. Note TN-420+STR, 29–33.

  • Klein, S. A., , X. Jiang, , J. Boyle, , S. Malyshev, , and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, doi:10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., 2007: A stability analysis of finite-volume advection schemes permitting long time steps. Mon. Wea. Rev., 135, 26582673.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., , C. Jablonowski, , M. Taylor, , and R. D. Nair, 2010: Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. J. Adv. Model. Earth Syst., 2, 15, doi:10.3894/JAMES.2010.2.15.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., , A. Mirin, , J. Truesdale, , K. Raeder, , J. Anderson, , J. Bacmeister, , and R. B. Neale, 2012: Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. Int. J. High Perform. Comput. Appl., 26, 6373, doi:10.1177/1094342011410088.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Liu, H., , and J. Li, 2010: An improvement in forecasting rapid intensification of Typhoon Sinlaku (2008) using clear-sky full spatial resolution advanced IR soundings. J. Appl. Meteor. Climatol., 49, 821827.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 2006: The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge University Press, 279 pp.

  • Machenhauer, B., , E. Kaas, , and P. H. Lauritzen, 2009: Finite-volume methods in meteorology. Computational Methods for the Atmosphere and the Oceans, P. Ciarlet, R. Temam, and J. Tribbia, Eds., Handbook of Numerical Analysis, Vol. 14, North-Holland, 3–120.

  • Miyoshi, T., , Y. Sato, , and T. Kadowaki, 2010: Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system. Mon. Wea. Rev., 138, 28462866.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR/TN-486+STR, 268 pp.

  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031915.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , R. J. P. Hofmann, , J. L. Anderson, , K. Raeder, , N. Collins, , and J. S. Whitaker, 2011: Can fully accounting for clouds in data assimilation improve short-term forecasts? Mon. Wea. Rev., 139, 946957.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2008: A linear analysis of the NCAR CCSM finite-volume dynamical core. Mon. Wea. Rev., 136, 21122119.

  • Stroeve, J., , M. Serezze, , S. Drobot, , S. Gearheard, , M. Holland, , J. Maslanik, , W. Meier, , and T. Scambos, 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89, 13, doi:10.1029/2008EO020001.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2009: A summary of the CMIP5 experimental design. World Climate Research Programme Tech Rep., 33 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]

  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., , J. Edwards, , and A. St. Cyr, 2008: Petascale atmospheric models for the Community Climate System Model: New developments and evaluation of scalable dynamical cores. J. Phys., 125, 012023, doi:10.1088/1742-6596/125/1/012023.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA High-Resolution Hurricane test. Mon. Wea. Rev., 138, 43754392.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J., , C. Jablonowski, , R. B. Rood, , and P. H. Lauritzen, 2011: A stability analysis of divergence damping on a latitude–longitude grid. Mon. Wea. Rev., 139, 29762993.

    • Search Google Scholar
    • Export Citation
  • Xie, S., , J. Boyle, , S. A. Klein, , X. Liu, , and S. Ghan, 2008: Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE. J. Geophys. Res., 113, D04211, doi:10.1029/2007JD009225.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., , A. Karspeck, , G. Danabasoglu, , J. Tribbia, , and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic ocean heat content. J. Climate, 25, 51735189.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., , J. Tribbia, , J. Anderson, , K. Raeder, , and D. Kleist, 2010: Diagnosis of systematic analysis increments by using normal modes. Quart. J. Roy. Meteor. Soc., 136, 6176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 23
PDF Downloads 101 101 15

DART/CAM: An Ensemble Data Assimilation System for CESM Atmospheric Models

View More View Less
  • 1 IMAGe, CISL, National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 CGD, NESL, National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The Community Atmosphere Model (CAM) has been interfaced to the Data Assimilation Research Testbed (DART), a community facility for ensemble data assimilation. This provides a large set of data assimilation tools for climate model research and development. Aspects of the interface to the Community Earth System Model (CESM) software are discussed and a variety of applications are illustrated, ranging from model development to the production of long series of analyses. CAM output is compared directly to real observations from platforms ranging from radiosondes to global positioning system satellites. Such comparisons use the temporally and spatially heterogeneous analysis error estimates available from the ensemble to provide very specific forecast quality evaluations. The ability to start forecasts from analyses, which were generated by CAM on its native grid and have no foreign model bias, contributed to the detection of a code error involving Arctic sea ice and cloud cover. The potential of parameter estimation is discussed. A CAM ensemble reanalysis has been generated for more than 15 yr. Atmospheric forcings from the reanalysis were required as input to generate an ocean ensemble reanalysis that provided initial conditions for decadal prediction experiments. The software enables rapid experimentation with differing sets of observations and state variables, and the comparison of different models against identical real observations, as illustrated by a comparison of forecasts initialized by interpolated ECMWF analyses and by DART/CAM analyses.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin Raeder, IMAGe, CISL, NCAR, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: raeder@ucar.edu

This article is included in the CESM1 Special Collection.

Abstract

The Community Atmosphere Model (CAM) has been interfaced to the Data Assimilation Research Testbed (DART), a community facility for ensemble data assimilation. This provides a large set of data assimilation tools for climate model research and development. Aspects of the interface to the Community Earth System Model (CESM) software are discussed and a variety of applications are illustrated, ranging from model development to the production of long series of analyses. CAM output is compared directly to real observations from platforms ranging from radiosondes to global positioning system satellites. Such comparisons use the temporally and spatially heterogeneous analysis error estimates available from the ensemble to provide very specific forecast quality evaluations. The ability to start forecasts from analyses, which were generated by CAM on its native grid and have no foreign model bias, contributed to the detection of a code error involving Arctic sea ice and cloud cover. The potential of parameter estimation is discussed. A CAM ensemble reanalysis has been generated for more than 15 yr. Atmospheric forcings from the reanalysis were required as input to generate an ocean ensemble reanalysis that provided initial conditions for decadal prediction experiments. The software enables rapid experimentation with differing sets of observations and state variables, and the comparison of different models against identical real observations, as illustrated by a comparison of forecasts initialized by interpolated ECMWF analyses and by DART/CAM analyses.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin Raeder, IMAGe, CISL, NCAR, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: raeder@ucar.edu

This article is included in the CESM1 Special Collection.

Save