• Ackerman, A. S., , O. B. Toon, , and P. V. Hobbs, 1993: Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science, 262, 226229.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., , C. S. Bretherton, , D. Johnson, , W. S. Schubert, , and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904.

    • Search Google Scholar
    • Export Citation
  • Barrett, A. I., , R. J. Hogan, , and E. J. O’Connor, 2009: Evaluating forecasts of the evolution of the cloudy boundary layer using diurnal composites of radar and lidar observations. Geophys. Res. Lett., 36, L17811, doi:10.1029/2009GL038919.

    • Search Google Scholar
    • Export Citation
  • Bigorre, S., and Coauthors, 2007: Stratus ocean reference station (20°S, 85°W): Mooring recovery and deployment cruise, R/V Ronald H. Brown cruise 06-07, October 9–October 27, 2006. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2007-01, 154 pp. [Available online at http://hdl.handle.net/1912/1565.]

  • Boyle, J. S., and Coauthors, 2005: Diagnosis of Community Atmospheric Model 2 (CAM2) in numerical weather forecast configuration at Atmospheric Radiation Measurement sites. J. Geophys. Res., 110, D15S15, doi:10.1029/2004JD005042.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977.

  • Bretherton, C. S., , R. Wood, , R. C. George, , D. Leon, , G. Allen, , and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, doi:10.5194/acp-10-10639-2010.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., , S. P. de Szoeke, , P. Zuidema, , and X. Zeng, 2010: A comparison of ship and satellite measurements of cloud properties with global climate model simulations in the southeast Pacific stratus deck. Atmos. Chem. Phys., 10, 65276536, doi:10.5194/acp-10-6527-2010.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp. [Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.]

  • Duynkerke, P. G., , and J. Teixeira, 2001: Comparison of the ECMWF reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus. J. Climate, 14, 14661478.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and R. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17, 16991710.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parametrization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J. Geophys. Res., 99 (D3), 55515568.

    • Search Google Scholar
    • Export Citation
  • Hannay, C., , D. L. Williamson, , J. J. Hack, , J. T. Kiehl, , J. G. Olson, , S. A. Klein, , C. S. Bretherton, , and M. Köhler, 2009: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate, 22, 28712889.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and D. A. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 12331250.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842.

    • Search Google Scholar
    • Export Citation
  • Jones, C. R., , C. S. Bretherton, , and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys. Discuss., 11, 84318460, doi:10.5194/acpd-11-8431-2011.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate,25, 5190–5207.

  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Ma, C.-C., , C. R. Mechoso, , A. W. Robertson, , and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean-atmosphere GCM study. J. Climate, 9, 16351645.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , T. Ackerman, , M. Smyth, , and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385399, doi:10.1007/s00382-009-0694-5.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., , M. P. Jensen, , and E. E. Clothiaux, 1998: Diurnal cloud and thermodynamic variations in the stratocumulus transition regime: A case study using in situ and remote sensors. J. Atmos. Sci., 55, 22942310.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., , and P. P. Sullivan, 1994: A comparison of shear and buoyancy-driven planetary boundary layers. J. Atmos. Sci., 51, 9991022.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010a: Description of the NCAR community atmosphere model (CAM 4.0). National Center for Atmospheric Research Tech. Rep. TN-485+STR, 224 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Neale, R. B., and Coauthors, 2010b: Description of the NCAR community atmosphere model (CAM 5.0). National Center for Atmospheric Research Tech. Rep. TN-486+STR, 283 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820, doi:10.1002/qj.49711046603.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., , and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48, 21412158.

  • Park, S., , and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031915.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , S. Platnick, , S. A. Ackerman, , R. S. Hemler, , and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate,25, 4699–4720.

  • Randall, D., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 588–662.

  • Rasch, P. J., , and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 15871614.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., , C. B. Leovy, , and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , W. R. Cotton, , G. Feingold, , and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., , and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113, 9691009, doi:10.1002/qj.49711347712.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., , and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 56735687.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2012: Dependence of APE simulations on vertical resolution with the Community Atmospheric Model, version 3. J. Meteor. Soc. Japan, in press.

  • Wood, R., , and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57, 18881905.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , C. S. Bretherton, , and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29, 2092, doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123147, doi:10.1007/s00382-008-0487-2.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2010: The PreVOCA experiment: Modeling the lower troposphere in the Southeast Pacific. Atmos. Chem. Phys., 10, 47574774, doi:10.5194/acp-10-4757-2010.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , and C. Bretherton, 2008: Mechanisms of low cloud–climate feedback in idealized single-column simulations with the Community Atmospheric Model, version 3 (CAM3). J. Climate, 21, 48594878.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , W. Lin, , C. S. Bretherton, , J. J. Hack, , and P. J. Rasch, 2003: A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). J. Geophys. Res., 108, 4035, doi:10.1029/2002JD002523.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z. S., and Coauthors, 2012: Pre-industrial and mid-pliocene simulations with NorESM-L. Geosci. Model Dev. Discuss., 5, 119148, doi:10.5194/gmdd-5-119-2012.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., , D. Painemal, , S. de Szoeke, , and C. Fairall, 2009: Stratocumulus cloud-top height estimates and their climatic implications. J. Climate, 22, 46524666.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 6
PDF Downloads 14 14 2

Southeast Pacific Stratocumulus in the Community Atmosphere Model

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Forecasts of October 2006 are used to investigate southeast Pacific stratocumulus in the Community Atmosphere Model, versions 4 and 5 (CAM4 and CAM5). Both models quickly develop biases similar to their climatic biases, suggesting that parameterized physics are the root of the climate errors. An extensive cloud deck is produced in CAM4, but the cloud structure is unrealistic because the boundary layer is too shallow and moist. The boundary layer structure is improved in CAM5, but during the daytime the boundary layer decouples from the cloud layer, causing the cloud layer to break up and transition toward a more trade wind cumulus structure in the afternoon. The cloud liquid water budget shows how different parameterizations contribute to maintaining these different expressions of stratocumulus. Sensitivity experiments help elucidate the origins of the errors. The importance of the diurnal cycle of these clouds for climate simulations is emphasized.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Brian Medeiros, P.O. Box 3000, National Center for Atmospheric Research, Boulder, CO 80307-3000. E-mail: brianpm@ucar.edu

Abstract

Forecasts of October 2006 are used to investigate southeast Pacific stratocumulus in the Community Atmosphere Model, versions 4 and 5 (CAM4 and CAM5). Both models quickly develop biases similar to their climatic biases, suggesting that parameterized physics are the root of the climate errors. An extensive cloud deck is produced in CAM4, but the cloud structure is unrealistic because the boundary layer is too shallow and moist. The boundary layer structure is improved in CAM5, but during the daytime the boundary layer decouples from the cloud layer, causing the cloud layer to break up and transition toward a more trade wind cumulus structure in the afternoon. The cloud liquid water budget shows how different parameterizations contribute to maintaining these different expressions of stratocumulus. Sensitivity experiments help elucidate the origins of the errors. The importance of the diurnal cycle of these clouds for climate simulations is emphasized.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Brian Medeiros, P.O. Box 3000, National Center for Atmospheric Research, Boulder, CO 80307-3000. E-mail: brianpm@ucar.edu
Save