• Alexander, M. A., , C. Deser, , and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 24192433.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , I. Blade, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on the air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , J.-S. Kug, , A. Timmermann, , I.-S. Kang, , and O. Timm, 2007: The influence of ENSO on the generation of decadal variability in the North Pacific. J. Climate, 20, 667680.

    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., , and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation System for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at http://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm.]

  • Ceballos, L. I., , E. Di Lorenzo, , C. D. Hoyos, , N. Schneider, , and B. Taguchi, 2009: North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Climate, 22, 51635174.

    • Search Google Scholar
    • Export Citation
  • Chhak, K. C., , E. D. Lorenzo, , N. Schneider, , and P. F. Cummins, 2009: Forcing of low-frequency ocean variability in the northeast Pacific. J. Climate, 22, 12551276.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397.

  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2009: Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophys. Res. Lett., 36, L14601, doi:10.1029/2009GL038261.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., , K. M. Cobb, , J. C. Furtado, , N. Schneider, , B. T. Anderson, , A. Bracco, , M. A. Alexander, , and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific. Nat. Geosci., 3, 762765.

    • Search Google Scholar
    • Export Citation
  • Furtado, J. C., , E. Di Lorenzo, , N. Schneider, , and N. A. Bond, 2011: North Pacific decadal variability and climate change in the IPCC AR4 models. J. Climate, 24, 30493067.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., , and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725.

  • Goodrich, G. B., 2007: Influence of the Pacific decadal oscillation on winter precipitation and drought during years of neutral ENSO in the western United States. Wea. Forecasting, 22, 116124.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., , D. M. Kann, , and C. Thornbrugh, 2002: Modulation of ENSO-based long-lead outlooks of southwestern U.S. winter precipitation by the Pacific decadal oscillation. Wea. Forecasting, 17, 11631172.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , J.-Y. Yu, , A. Kumar, , and H. Wang, 2012: Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon. Wea. Rev., 140, 19081923.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., , and M. Sugi, 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn., 21, 233242.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and N. S. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34, L12702, doi:10.1029/2006GL028937.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995.

  • Mantua, N. J., 1999: The Pacific decadal oscillation and climate forecasting for North America. Climate Risk Solutions, 1, 1013.

  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , M. A. Palecki, , and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , H.-L. Pan, , and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Tech. Procedures Bulletin 484, 14 pp. [Available online at http://www.nws.noaa.gov/om/tpb/484.htm.]

  • Newman, M., , G. P. Compo, , and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16, 38533857.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., , and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 668 pp.

  • Pan, H.-L., , and L. Mahrt, 1987: Interaction between soil hydrology and boundary layer developments. Bound.-Layer Meteor., 38, 185202.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillation: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3958.

  • Roy, S. S., , G. B. Goodrich, , and R. C. Balling Jr., 2003: Influence of El Niño/Southern Oscillation, Pacific decadal oscillation, and local sea surface temperature anomalies on peak season monsoon precipitation in India. Climate Res., 25, 171178.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Schneider, N., , and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373.

  • Shakun, J., , and J. Shaman, 2009: Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett., 36, L19711, doi:10.1029/2009GL040313.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., , S.-P. Xie, , N. Schneider, , M. Nonaka, , H. Sasaki, , and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , J. Oberhuber, , A. Bacher, , M. Esch, , M. Latif, , and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694696.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14, 16971701.

  • Vecchi, G. A., , M. Zhao, , H. Wang, , G. Villarini, , A. Rosati, , A. Kumar, , I. M. Held, , and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2008: How accurately do coupled climate models predict the Asian-Australian monsoon interannual variability? Climate Dyn., 30, 605619.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , J.-K. E. Schemm, , A. Kumar, , W. Wang, , L. Long, , M. Chelliah, , G. D. Bell, , and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , A. Kumar, , W. Wang, , and Y. Xue, 2012: Seasonality of the Pacific decadal oscillation. J. Climate, 25, 2538.

  • Wang, W., , S. Saha, , H.-L. Pan, , S. Nadiga, , and G. White, 2005: Simulation of ENSO in the new NCEP Coupled Forecast System Model (CFS03). Mon. Wea. Rev., 133, 15741593.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , M. Chen, , and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950969.

  • Wu, L., , and Z. Liu, 2003: Decadal variability in the North Pacific: The eastern North Pacific mode. J. Climate, 16, 31113131.

  • Wu, L., , Z. Liu, , R. Gallimore, , R. Jacob, , D. Lee, , and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16, 11011120.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , Y. Jiang, , D. Zheng, , R. W. Higgins, , Q. Zhang, , V. E. Kousky, , and M. Wen, 2009: Variations of U.S. regional precipitation and simulations by the NCEP CFS: Focus on the Southwest. J. Climate, 22, 32113231.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , and B. P. Kirtman, 2005: Pacific decadal variability and decadal ENSO amplitude modulation. Geophys. Res. Lett., 32, L05703, doi:10.1029/2004GL021731.

    • Search Google Scholar
    • Export Citation
  • Yoon, J., , and S.-W. Yeh, 2010: Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. J. Climate, 23, 45254537.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., , A. Kumar, , Y. Xue, , W. Wang, , and F.-F. Jin, 2007: Analysis of the ENSO cycle in the NCEP coupled forecast model. J. Climate, 20, 12651284.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability. J. Climate, 10, 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 17
PDF Downloads 34 34 10

Influence of ENSO on Pacific Decadal Variability: An Analysis Based on the NCEP Climate Forecast System

View More View Less
  • 1 Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, Maryland, and Wyle Science, Technology and Engineering Group, McLean, Virginia
  • | 2 Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, Maryland
© Get Permissions
Restricted access

Abstract

The influence of El Niño–Southern Oscillation (ENSO) on Pacific decadal variability (PDV) is investigated by comparing two 500-yr simulations with the National Centers for Environmental Prediction (NCEP) Climate Forecast System coupled model. One simulation is a no-ENSO run, in which model daily sea surface temperature (SST) in the tropical Pacific Ocean is relaxed to the observed climatology. The other simulation is a fully coupled run and retains ENSO variability. The PDV considered in this study is the first two empirical orthogonal functions of monthly SST anomalies in the North Pacific: the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). The PDO in the no-ENSO run can be clearly identified. Without ENSO, the PDO displays relatively higher variance at the decadal time scale and no spectral peak at the interannual time scale. In the ENSO run, the PDO variability increases slightly. ENSO not only enhances the variability of the PDO at the interannual time scale, but also shifts the PDO to longer time scales—both consistent with observations. ENSO modulates the Aleutian low and associated surface wind over the North Pacific. The latter, in turn, helps establish a more persistent PDO in the ENSO run. The results also indicate a PDO modulation of global ENSO impacts and the linearity in the superposition of the ENSO-forced and PDO-related atmospheric anomalies. Compared to observations, the NPGO in both simulations lacks power at the time scale longer than 30 yr. On the decadal time scale, the variability of the NPGO is weaker in the ENSO run than in the no-ENSO run.

Corresponding author address: Dr. Hui Wang, NOAA Climate Prediction Center, 5200 Auth Road, Camp Springs, MD 20746. E-mail: hui.wang@noaa.gov

Abstract

The influence of El Niño–Southern Oscillation (ENSO) on Pacific decadal variability (PDV) is investigated by comparing two 500-yr simulations with the National Centers for Environmental Prediction (NCEP) Climate Forecast System coupled model. One simulation is a no-ENSO run, in which model daily sea surface temperature (SST) in the tropical Pacific Ocean is relaxed to the observed climatology. The other simulation is a fully coupled run and retains ENSO variability. The PDV considered in this study is the first two empirical orthogonal functions of monthly SST anomalies in the North Pacific: the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). The PDO in the no-ENSO run can be clearly identified. Without ENSO, the PDO displays relatively higher variance at the decadal time scale and no spectral peak at the interannual time scale. In the ENSO run, the PDO variability increases slightly. ENSO not only enhances the variability of the PDO at the interannual time scale, but also shifts the PDO to longer time scales—both consistent with observations. ENSO modulates the Aleutian low and associated surface wind over the North Pacific. The latter, in turn, helps establish a more persistent PDO in the ENSO run. The results also indicate a PDO modulation of global ENSO impacts and the linearity in the superposition of the ENSO-forced and PDO-related atmospheric anomalies. Compared to observations, the NPGO in both simulations lacks power at the time scale longer than 30 yr. On the decadal time scale, the variability of the NPGO is weaker in the ENSO run than in the no-ENSO run.

Corresponding author address: Dr. Hui Wang, NOAA Climate Prediction Center, 5200 Auth Road, Camp Springs, MD 20746. E-mail: hui.wang@noaa.gov
Save