• Ardhuin, F., , J. Tournadre, , P. Queffeulou, , F. Girard-Ardhuin, , and F. Collard, 2011: Observation and parameterization of small icebergs: Drifting breakwaters in the southern ocean. Ocean Modell., 39, 405410.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , J. R. McCaa, , and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882.

    • Search Google Scholar
    • Export Citation
  • Caires, S., , and A. Sterl, 2003: Validation of ocean wind and wave data using triple collocation. J. Geophys. Res., 108, 3098, doi:10.1029/2002JC001491.

    • Search Google Scholar
    • Export Citation
  • Caires, S., , and A. Sterl, 2005: A new nonparametric method to correct model data: Application to significant wave height from the ERA-40 reanalysis. J. Atmos. Oceanic Technol., 22, 443459.

    • Search Google Scholar
    • Export Citation
  • Caires, S., , A. Sterl, , J.-R. Bidlot, , N. Graham, , and V. Swail, 2004: Intercomparison of different wind–wave reanalysis. J. Climate, 17, 18931913.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D. V., 1995: The parameterization of the wave boundary layer. J. Phys. Oceanogr., 25, 13331349.

  • Chao, Y. Y., , J. H. G. M. Alves, , and H. L. Tolman, 2005: An operational system for predicting hurricane-generated wind waves in the North Atlantic Ocean. Wea. Forecasting, 20, 652671.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , B. Chapron, , R. Ezraty, , and D. Vandmark, 2002: A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J. Atmos. Oceanic Technol., 19, 18491859.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds. Cambridge University Press, 847–940.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. D., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , M. A. Donelan, , E. A. Terray, , and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , G. C. Graber, , D. Hauser, , and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., , I. Ginis, , and T. Hara, 2009a: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in hurricanes. J. Phys. Oceanogr., 39, 10191034.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., , I. Ginis, , T. Hara, , C. W. Wright, , and E. J. Walsh, 2009b: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., , I. Ginis, , and T. Hara, 2010: Momentum flux budget across air–sea interface under uniform and tropical cyclone winds. J. Phys. Oceanogr., 40, 22212242.

    • Search Google Scholar
    • Export Citation
  • French, J. R., , W. M. Drennan, , and J. A. Zhang, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL Global Atmosphere and Land Model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711.

  • Hanley, K. E., , and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 26462660.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., , S. E. Belcher, , and P. P. Sullivan, 2010: A global climatology of wind–wave interaction. J. Phys. Oceanogr., 40, 12631282.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., , X. L. Wang, , J. A. Church, , and V. R. Swail, 2010a: Modeling proposal: Coordinating global ocean wave climate projections. Bull. Amer. Meteor. Soc.,91, 451–454.

  • Hemer, M. A., , J. A. Church, , and J. R. Hunter, 2010b: Variability and trends in the directional wave climate of the southern hemisphere. Int. J. Climatol., 30, 475491.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1989: Wind-induced stress and the drag of air–flow over sea waves. J. Phys. Oceanogr., 19, 745754.

  • Komen, G. J., , L. Cavaleri, , M. Donelan, , K. Hasselmann, , S. Hasselmann, , and P. A. E. M. Janssen, 1994: Dynamics and Modeling of Ocean Waves. Cambridge University Press, 520 pp.

  • Large, W. G., , and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Li, M., , and C. Garrett, 1997: Mixed-layer deepening due to Langmuir circulation. J. Phys. Oceanogr., 27, 121132.

  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Milly, P. C. D., , and A. B. Shmakin, 2002: Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeor., 3, 283299.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., , I. Ginis, , and T. Hara, 2004: Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett., 31, L20302, doi:10.1029/2004GL020988.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., , P. P. Wong, , V. R. Burkett, , J. O. Codignotto, , J. E. Hay, , R. F. McLean, , S. Ragoonaden, , and C. D. Woodroffe, 2007: Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 315–356.

  • Powell, M. D., , P. J. Vickery, , and T. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., , and S. J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578.

  • Rayner, R., , D. Parker, , E. Horton, , C. Folland, , L. Alexander, , and D. Rowel, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1992: Effects of numerics on the physics in a third-generation wind–wave model. J. Phys. Oceanogr., 22, 10951111.

  • Tolman, H. L., 1998: Validation of a new global wave forecast system at NCEP. Ocean Wave Measurements and Analysis, B. L. Edge and J. M. Helmsley, Eds., ASCE, 777–786.

  • Tolman, H. L., , and D. Chalikov, 1996: Source terms in a third-generation wind–wave model. J. Phys. Oceanogr., 26, 24972518.

  • Tolman, H. L., , and J. H. G. M. Alves, 2005: Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell., 9, 305323.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., , B. Balasubramaniyan, , L. D. Burroughs, , D. Chalikov, , Y. Y. Chao, , H. S. Chen, , and V. M. Gerald, 2002: Development and implementation of wind generated ocean surface wave models at NCEP. Wea. Forecasting, 17, 311333.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., , J. H. G. M. Alves, , and Y. Y. Chao, 2005: Operational forecasting of wind-generated waves by Hurricane Isabel at NCEP. Wea. Forecasting, 20, 544557.

    • Search Google Scholar
    • Export Citation
  • WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810.

  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 299 299 54
PDF Downloads 123 123 27

Global Ocean Surface Wave Simulation Using a Coupled Atmosphere–Wave Model

View More View Less
  • 1 Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 3 NOAA/Geophysical Fluid Dynamics Laboratory, and University Corporation for Atmospheric Research, Princeton, New Jersey
  • | 4 NOAA/NCEP Environmental Modeling Center, Camp Springs, Maryland
© Get Permissions
Restricted access

Abstract

This study describes a 29-yr (1981–2009) global ocean surface gravity wave simulation generated by a coupled atmosphere–wave model using NOAA/GFDL’s High-Resolution Atmosphere Model (HiRAM) and the WAVEWATCH III surface wave model developed and used operationally at NOAA/NCEP. Extensive evaluation of monthly mean significant wave height (SWH) against in situ buoys, satellite altimeter measurements, and the 40-yr ECMWF Re-Analysis (ERA-40) show very good agreements in terms of magnitude, spatial distribution, and scatter. The comparisons with satellite altimeter measurements indicate that the SWH low bias in ERA-40 reanalysis has been improved in these model simulations. The model fields show a strong response to the North Atlantic Oscillation (NAO) in the North Atlantic and the Southern Oscillation index (SOI) in the Pacific Ocean that are well connected with the atmospheric responses. For the NAO in winter, the strongest subpolar wave responses are found near the northern Europe coast and the coast of Labrador rather than in the central-northern Atlantic where the wind response is strongest. Similarly, for the SOI in the Pacific Ocean, the wave responses are strongest in the northern Bering Sea and the Antarctic coast.

Corresponding author address: Yalin Fan, Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540-6654. E-mail: yalin.fan@noaa.gov

Abstract

This study describes a 29-yr (1981–2009) global ocean surface gravity wave simulation generated by a coupled atmosphere–wave model using NOAA/GFDL’s High-Resolution Atmosphere Model (HiRAM) and the WAVEWATCH III surface wave model developed and used operationally at NOAA/NCEP. Extensive evaluation of monthly mean significant wave height (SWH) against in situ buoys, satellite altimeter measurements, and the 40-yr ECMWF Re-Analysis (ERA-40) show very good agreements in terms of magnitude, spatial distribution, and scatter. The comparisons with satellite altimeter measurements indicate that the SWH low bias in ERA-40 reanalysis has been improved in these model simulations. The model fields show a strong response to the North Atlantic Oscillation (NAO) in the North Atlantic and the Southern Oscillation index (SOI) in the Pacific Ocean that are well connected with the atmospheric responses. For the NAO in winter, the strongest subpolar wave responses are found near the northern Europe coast and the coast of Labrador rather than in the central-northern Atlantic where the wind response is strongest. Similarly, for the SOI in the Pacific Ocean, the wave responses are strongest in the northern Bering Sea and the Antarctic coast.

Corresponding author address: Yalin Fan, Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540-6654. E-mail: yalin.fan@noaa.gov
Save