Investigation of the Surface and Circulation Impacts of Cloud-Brightening Geoengineering

E. Baughman Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by E. Baughman in
Current site
Google Scholar
PubMed
Close
,
A. Gnanadesikan Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by A. Gnanadesikan in
Current site
Google Scholar
PubMed
Close
,
A. Degaetano Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by A. Degaetano in
Current site
Google Scholar
PubMed
Close
, and
A. Adcroft Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by A. Adcroft in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Projected increases in greenhouse gases have prompted serious discussion on geoengineering the climate system to counteract global climate change. Cloud albedo enhancement has been proposed as a feasible geoengineering approach, but previous research suggests undesirable consequences of globally uniform cloud brightening. The present study uses GFDL’s Climate Model version 2G (CM2G) global coupled model to simulate cloud albedo enhancement via increases in cloud condensation nuclei (CCN) to 1000 cm−3 targeted at the marine stratus deck of the Pacific Ocean, where persistent low clouds suggest a regional approach to cloud brightening. The impact of this regional geoengineering on global circulation and climate in the presence of a 1% annual increase of CO2 was investigated. Surface temperatures returned to near preindustrial levels over much of the globe with cloud modifications in place. In the first 40 years and over the 140-yr mean, significant cooling over the equatorial Pacific, continued Arctic warming, large precipitation changes over the western Pacific, and a westward compression and intensification of the Walker circulation were observed in response to cloud brightening. The cloud brightening caused a persistent La Niña condition associated with an increase in hurricane maximum potential intensity and genesis potential index, and decreased vertical wind shear between July and November in the tropical Atlantic, South China Sea, and to the east of Japan. Responses were similar with CCN = 500 cm−3.

Corresponding author address: E. Baughman, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Seattle, WA 98195. E-mail: eowynb@atmos.washington.edu

Abstract

Projected increases in greenhouse gases have prompted serious discussion on geoengineering the climate system to counteract global climate change. Cloud albedo enhancement has been proposed as a feasible geoengineering approach, but previous research suggests undesirable consequences of globally uniform cloud brightening. The present study uses GFDL’s Climate Model version 2G (CM2G) global coupled model to simulate cloud albedo enhancement via increases in cloud condensation nuclei (CCN) to 1000 cm−3 targeted at the marine stratus deck of the Pacific Ocean, where persistent low clouds suggest a regional approach to cloud brightening. The impact of this regional geoengineering on global circulation and climate in the presence of a 1% annual increase of CO2 was investigated. Surface temperatures returned to near preindustrial levels over much of the globe with cloud modifications in place. In the first 40 years and over the 140-yr mean, significant cooling over the equatorial Pacific, continued Arctic warming, large precipitation changes over the western Pacific, and a westward compression and intensification of the Walker circulation were observed in response to cloud brightening. The cloud brightening caused a persistent La Niña condition associated with an increase in hurricane maximum potential intensity and genesis potential index, and decreased vertical wind shear between July and November in the tropical Atlantic, South China Sea, and to the east of Japan. Responses were similar with CCN = 500 cm−3.

Corresponding author address: E. Baughman, Department of Atmospheric Sciences, University of Washington, 408 ATG Building, Seattle, WA 98195. E-mail: eowynb@atmos.washington.edu
Save
  • Ackerman, A., O. Toom, J. Taylor, D. Johnson, P. Hobbs, and R. J. Ferek, 2000: Effects of aerosols on cloud albedo: Evaluation of Twomey’s parameterization of cloud susceptibility using measurements of ship tracks. J. Atmos. Sci., 57, 26842695.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A., M. Kirkpatrick, D. Stevens, and O. Toown, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., R. Hallberg, and M. Harrison, 2008: A finite volume discretization of the pressure gradient force using analytic integration. Ocean Modell., 22 (3–4), 106113.

    • Search Google Scholar
    • Export Citation
  • Adler, R., and Coauthors, 2003: The version-2 global precipitation climatology project GPCP monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11481167.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • AMS, cited 2009: Geoengineering the climate system: A policy statement of the American Meteorological Society. [Available online at http://www.ametsoc.org/policy/2009geoengineeringclimate_amsstatement.pdf.]

  • Anderson, J., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Anderson, W., A. Gnanadesikan, R. Hallberg, J. Dunne, and B. Samuels, 2007: Impact of ocean color on the maintenance of the Pacific Cold Tongue. Geophys. Res. Lett., 34, L11609, doi:10.1029/2007GL030100.

    • Search Google Scholar
    • Export Citation
  • Anderson, W., A. Gnanadesikan, and A. Wittenberg, 2009: Regional impacts of ocean color on tropical pacific variability. Ocean Sci., 5, 313327.

    • Search Google Scholar
    • Export Citation
  • Bickel, J., and L. Lane, 2009: An analysis of climate engineering as a response to climate change. Copenhagen Consensus Center, Copenhagen Consensus on Climate Publ., 57 pp.

  • Bower, K., T. Choularton, J. Latham, J. Sahraei, and S. Salter, 2006: Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds. Atmos. Res., 82, 328336.

    • Search Google Scholar
    • Export Citation
  • Boyd, P. W., 2008: Ranking geo-engineering schemes. Nat. Geosci., 1, 722724.

  • Camargo, S., K. Emanuel, and A. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194833.

    • Search Google Scholar
    • Export Citation
  • Camargo, S., A. Sobel, A. Barnston, and K. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). National Center for Atmospheric Research Tech. Rep. NCAR TND 464+STR, 214 pp.

  • Crutzen, P., 2006: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77 (3–4), 211220.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630.

  • Delworth, T., and Coauthors, 2006: GFDL’S CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643673.

    • Search Google Scholar
    • Export Citation
  • Dunne, J., and Coauthors, 2012: GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241. [Available online at https://ams.confex.com/ams/26HURR/webprogram/Paper75463.html.]

  • Frank, W., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269.

    • Search Google Scholar
    • Export Citation
  • Ghate, V., B. Albrecht, P. Kollias, H. Jonsson, and D. Breed, 2007: Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus. Geophys. Res. Lett., 34, L14807, doi:10.1029/2007GL029748.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and W. Anderson, 2009: Ocean water clarity and the ocean general circulation in a coupled climate model. J. Phys. Oceanogr., 39, 314333.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., K. Emanuel, G. Vecchi, W. Anderson, and R. Hallberg, 2010: How ocean color steers Pacific tropical cyclones. Geophys. Res. Lett., 37, L18802, doi:10.1029/2010GL044514.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S., C. Landsea, A. Mestas-Nunez, and W. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Adcroft, 2009: Reconciling estimates of the free surface height in lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modell., 29, 1526.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., and R. W. Hallberg, 2008: Pacific subtropical cell response to reduced equatorial dissipation. J. Phys. Oceanogr., 38, 18941912.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., 1994: Global Physical Climatology, International Geophysics Series., Vol. 56, Academic Press, 411 pp.

  • Houghton, J. T., and Coauthors, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 892 pp.

  • Jones, A., J. Haywood, and O. Boucher, 2009: Climate impacts of geoengineering marine stratocumulus clouds. J. Geophys. Res., 114, D10106, doi:10.1029/2008JD011450.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, and H. Rodhe, 1997: Cloud radiative forcing of subtropical low level clouds in global models. J. Climate Dyn., 30 (7–8), 779788.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., J. Sirutis, S. Garner, G. Vecchi, and I. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Korhonen, H., K. Carslaw, and S. Romakkaniemi, 2010: Enhancement of marine cloud albedo via controlled sea spray injections: A global model study of the influence of emission rates, microphysics and transport. Atmos. Chem. Phys. Discuss., 10, 735761.

    • Search Google Scholar
    • Export Citation
  • Kravitz, B., A. Robock, O. Boucher, H. Schmidt, K. E. Taylor, G. Stenchikov, and M. Schulz, 2011: The geoengineering model intercomparison project (geomip). Atmos. Sci. Lett., 12, 162167.

    • Search Google Scholar
    • Export Citation
  • Lane, L., Ed., 2006: Workshop report on managing solar radiation. NASA Ames Research Center, Carnegie Institute of Washington Department of Global Ecology Rep. NASA/CP-2007-214558, 31 pp.

  • Latham, J., 1990: Control of global warming? Nature, 347, 339340.

  • Latham, J., 2002: Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Lett., 3, 5258.

    • Search Google Scholar
    • Export Citation
  • Latham, J., and Coauthors, 2008: Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philos. Trans. Roy. Soc., A137, 39693967.

    • Search Google Scholar
    • Export Citation
  • Latham, J., and Coauthors, 2012: Marine cloud brightening. Philos. Trans. Roy. Soc., A370, 42174262.

  • McBride, J., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part 2: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151.

    • Search Google Scholar
    • Export Citation
  • Merikanto, J., D. Spracklen, G. Mann, S. Pickering, and K. Carslaw, 2009: Impact of nucleation on global CCN. Atmos. Chem. Phys. Discuss., 9, 12 99913 037.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.

    • Search Google Scholar
    • Export Citation
  • Palmer, C., Ed., 2002: The effects of vertical wind shear as diagnosed by the NCEP/NCAR reanalysis data on northeast Pacific hurricane intensity. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 2B.2. [Available online at https://ams.confex.com/ams/25HURR/webprogram/Paper37947.html.]

  • Peters, K., J. Quass, and H. Grasl, 2011: A search for large-scale effects of ship emissions on clouds and radiation in satellite data. J. Geophys. Res., 116, D24205, doi:10.1029/2011JD016531.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and S. Twomey, 1994: Determining the susceptibility of cloud albedo to changes in droplet concentrations with the advanced very high resolution radiometer. J. Appl. Meteor., 33, 334347.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., S. Tilmes, R. P. Turco, A. Robock, L. Oman, C.-C. Chen, G. L. Stenchikov, and R. R. Garcia, 2008: An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. Roy. Soc., A366, 40074037.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., J. Latham, and C. Chen, 2009: Geoengineering by cloud seeding: Influence on sea ice and climate system. Environ. Res. Lett., 4, 045112, doi:10.1088/1748-9326/4/4/045112.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2008: Whither geoengineering? Science, 320, 11661167.

  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including tropospheric sulfur cycle. J. Climate, 12, 30043032.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Rotstayn, L., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 12271282.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L., B. F. Ryan, and J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase clouds in large-scale models. Mon. Wea. Rev., 128, 10701088.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M., C. Leovy, and S. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951808.

    • Search Google Scholar
    • Export Citation
  • Salter, S., G. Sortino, and J. Latham, 2008: Sea-going hardware for the cloud albedo method of reversing global warming. Philos. Trans. Roy. Soc., A366, 39894006.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. Pandis, 1997: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley-Interscience, 1203 pp.

  • Shevliakova, E., and Coauthors, 2009: Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles, 23, GB2022, doi:10.1029/2007GB003176.

    • Search Google Scholar
    • Export Citation
  • Small, J., P. Chuang, G. Feingold, and H. Jiang, 2009: Can aerosol decrease cloud lifetime? Geophys. Res. Lett., 36, L16806, doi:10.1029/2009GL038888.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Twomey, S., 1991: Aerosols, clouds, and radiation. Atmos. Environ., 25A, 24352442.

  • Vecchi, G., and B. Soden, 2007: Increased tropical Atlantic wind shear in projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., K. Swanson, and B. Soden, 2008: Whither hurricane activity? Science, 322, 687689.

  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423.

  • Xie, P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 617 208 4
PDF Downloads 475 167 10