Thermodynamic Causes for Future Trends in Heavy Precipitation over Europe Based on an Ensemble of Regional Climate Model Simulations

Christine Radermacher Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Christine Radermacher in
Current site
Google Scholar
PubMed
Close
and
Lorenzo Tomassini Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Lorenzo Tomassini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An extreme-value analysis of projected changes in heavy precipitation is carried out for an ensemble of eight high-resolution regional climate model simulations over the European domain. The consideration of several regional climate models that are forced by different global models allows for an assessment of the robustness of the results in terms of intersimulation agreement. The extreme-value statistical method is based on a model that includes time-dependent parameters. Summer and winter are examined separately. This allows for identifying and sharpening the understanding of physical processes inducing the changes in precipitation characteristics. Thermodynamic aspects of changes in heavy precipitation are discussed. Variables that are related to the process of precipitation formation, such as precipitable water and cloud liquid water, are examined. In this context, the scaling of changes in heavy precipitation and other thermodynamic quantities with changes in temperature is explored. The validity of a Clausius–Clapeyron scaling of heavy precipitation is assessed on regional scales. Significant regional and seasonal differences in trends of heavy precipitation and only a limited validity of the Clausius–Clapeyron scaling are found. In winter, enhanced moisture transport and storm-track intensity lead to an increase in heavy precipitation, especially over the northern parts of the European continent. In summer, the increase of precipitable water is less than that required to maintain the same probability for saturation over southern Europe, which results in negative trends of heavy precipitation in these regions.

Corresponding author address: Christine Radermacher, Max Planck Institute for Meteorology, Bundesstrasse 53, D-20146 Hamburg, Germany. E-mail: christine.radermacher@zmaw.de

Abstract

An extreme-value analysis of projected changes in heavy precipitation is carried out for an ensemble of eight high-resolution regional climate model simulations over the European domain. The consideration of several regional climate models that are forced by different global models allows for an assessment of the robustness of the results in terms of intersimulation agreement. The extreme-value statistical method is based on a model that includes time-dependent parameters. Summer and winter are examined separately. This allows for identifying and sharpening the understanding of physical processes inducing the changes in precipitation characteristics. Thermodynamic aspects of changes in heavy precipitation are discussed. Variables that are related to the process of precipitation formation, such as precipitable water and cloud liquid water, are examined. In this context, the scaling of changes in heavy precipitation and other thermodynamic quantities with changes in temperature is explored. The validity of a Clausius–Clapeyron scaling of heavy precipitation is assessed on regional scales. Significant regional and seasonal differences in trends of heavy precipitation and only a limited validity of the Clausius–Clapeyron scaling are found. In winter, enhanced moisture transport and storm-track intensity lead to an increase in heavy precipitation, especially over the northern parts of the European continent. In summer, the increase of precipitable water is less than that required to maintain the same probability for saturation over southern Europe, which results in negative trends of heavy precipitation in these regions.

Corresponding author address: Christine Radermacher, Max Planck Institute for Meteorology, Bundesstrasse 53, D-20146 Hamburg, Germany. E-mail: christine.radermacher@zmaw.de
Save
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484.

  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224232.

  • Bengtsson, L., K. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543.

  • Bengtsson, L., K. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301.

    • Search Google Scholar
    • Export Citation
  • Berg, P., J. O. Haerter, P. Thejll, C. Piani, S. Hagemann, and J. H. Christensen, 2009: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res., 114, D18102, doi:10.1029/2009JD012008.

    • Search Google Scholar
    • Export Citation
  • Böhm, U., M. Kücken, W. Ahrens, A. Block, D. Hauffe, K. Keuler, B. Rockel, and A. Will, 2006: CLM - The climate version of LM: Brief description and long-term applications. COSMO Newsletter, No. 6, 225–235.

  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2010: Moisture transport in mid-latitude cyclones. Quart. J. Roy. Meteor. Soc., 136, 115.

    • Search Google Scholar
    • Export Citation
  • Buishand, T. A., 1989: Statistics of extremes in climatology. Stat. Neerl., 43, 130, doi:10.1111/j.1467-9574.1989.tb01244.x.

  • Christensen, H., E. Kjellström, F. Giorgi, G. Lenderink, and M. Rummukainen, 2010: Weight assignment in regional climate models. Climate Res., 44, 179194.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and O. B. Christensen, 2007: A summary of the prudence model projections of changes in European climate by the end of this century. Climatic Change, 81, 730.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 208 pp.

  • Coles, S., and A. Stephenson, cited 2011: Ismev: An Introduction to Statistical Modeling of Extreme Values. R package version 1.36. [Available online at http://CRAN.R-project.org/package=ismev.]

  • Collins, M., B. B. B. Booth, G. R. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2006: Towards quantifying uncertainty in transient climate change. Climate Dyn., 27, 127147.

    • Search Google Scholar
    • Export Citation
  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc., B52, 393442.

  • Del Genio, A. D., M.-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Durman, C. F., J. M. Gregory, D. C. Hassell, R. G. Jones, and J. M. Murphy, 2001: A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Quart. J. Roy. Meteor. Soc., 127, 10051015, doi:10.1002/qj.49712757316.

    • Search Google Scholar
    • Export Citation
  • Embrechts, P., C. Klüppelberg, and T. Mikosch, 1997: Modelling Extremal Events for Insurance and Finance. Springer, 645 pp.

  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434.

    • Search Google Scholar
    • Export Citation
  • Frei, C., J. H. Christensen, M. Déqué, D. Jacob, R. G. Jones, and P. L. Vidale, 2003: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res., 108, 4124, doi:10.1029/2002JD002287.

    • Search Google Scholar
    • Export Citation
  • Frei, C., R. Schöll, S. Fukutome, J. Schmidli, and P. L. Vidale, 2006: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65, 10491062.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2009: On the zonal structure of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 66, 332352.

    • Search Google Scholar
    • Export Citation
  • Hanel, M., and T. A. Buishand, 2010: On the value of hourly precipitation extremes in regional climate model simulations. J. Hydrol., 393 (3–4), 265273, doi:10.1016/j.jhydrol.2010.08.024.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hohenegger, C., A. Walser, W. Langhans, and C. Schär, 2008: Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., 2001: A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteor. Atmos. Phys., 77, 6173.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 1999: Extreme value theory for precipitation: Sensitivity analysis for climate change. Adv. Water Res., 23, 133139.

  • Katz, R. W., M. B. Parlange, and P. Naveau, 2002: Statistics of extremes in hydrology. Adv. Water Res., 25, 12871304.

  • Kjellström, E., and Coauthors, 2005: A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Tech. Rep. 108, 54 pp.

  • Kjellström, E., F. Boberg, M. Castro, H. Christensen, G. Nikulin, and E. Sánchez, 2010: Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Climate Res., 44, 135150.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., 2010: Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations. Climate Res., 44, 151166.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., B. van den Hurk, E. van Meijgaard, A. van Ulden, and J. Cuijpers, 2003: Simulation of present-day climate in RACMO2: First results and model developments. KNMI Tech. Rep. 252, 24 pp.

  • Lionello, P., U. Boldrin, and F. Giorgi, 2008: Future changes in cyclone climatology over Europe as inferred from a regional climate model simulation. Climate Dyn., 30, 657671.

    • Search Google Scholar
    • Export Citation
  • Lorenz, P., and D. Jacob, 2010: Validation of temperature trends in the ENSEMBLES regional climate model runs driven by ERA40. Climate Res., 44, 167177.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., N. Zeng, J.-H. Yoon, V. Artale, A. Navarra, P. Alpert, and L. Z. X. Li, 2008: Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environ. Res. Lett., 3, 044001, doi:10.1088/1748-9326/3/4/044001.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., P. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 27842800.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Naveau, P., M. Nogaj, C. Ammann, P. Yiou, D. Cooley, and V. Jomelli, 2005: Statistical methods for the analysis of climate extremes. C. R. Geosci., 337, 10131022, doi:10.1016/j.crte.2005.04.015.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, doi:10.1088/1748-9326/5/2/025207.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team, cited 2011: The R Project for Statistical Computing. [Available online at http://www.r-project.org/.]

  • Ribatet, M., cited 2011: POT: Generalized Pareto distribution and peaks over threshold. R package version 1.1-1. [Available online at http://CRAN.R-project.org/package=POT.]

  • Sanchez-Gomez, E., S. Somot, and M. Déqué, 2009: Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000. Climate Dyn., 33, 723736.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Semmler, T., and D. Jacob, 2004: Modeling extreme precipitation events - A climate change simulation for Europe. Global Planet. Change, 44, 119127.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99 (3–4), 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. L. Vidale, and P. A. O’Gorman, 2010: Relative humidity changes in a warmer climate. J. Geophys. Res., 115, D09104, doi:10.1029/2009JD012585.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., 2003: Statistics of extremes, with applications in environment, insurance and finance. Extreme Values in Finance, Telecommunications and the Environment, B. Finkenstadt and H. Rootzen, Eds., Chapman and Hall/CRC Press, 1–78.

  • Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., and D. Jacob, 2009: Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. J. Geophys. Res., 114, D12113, doi:10.1029/2008JD010652.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138.

  • Ulbrich, U., J. G. Pinto, H. Kupfer, C. Leckebusch, T. Spangehl, and M. Reyers, 2008: Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Climate, 21, 16691679.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 695 473 142
PDF Downloads 167 49 2