Local and Remote Climate Impacts from Expansion of Woody Biomass for Bioenergy Feedstock in the Southeastern United States

Lisa N. Murphy Climate Sciences Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Lisa N. Murphy in
Current site
Google Scholar
PubMed
Close
,
William J. Riley Climate Sciences Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by William J. Riley in
Current site
Google Scholar
PubMed
Close
, and
William D. Collins Climate Sciences Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, and Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California

Search for other papers by William D. Collins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many efforts have been taken to find energy alternatives to reduce anthropogenic influences on climate. Recent studies have shown that using land for bioenergy plantations may be more cost effective and provide a greater potential for CO2 abatement than using land for carbon sequestration. Native southern U.S. pines (i.e., loblolly) have excellent potential as bioenergy feedstocks. However, the land-cover change due to expansion of biofuels may impact climate through biophysical feedbacks. Here, the authors access the local and remote consequences of greater forest management and biofuel feedstock expansion on climate and hydrology using a global climate model, the NCAR Community Climate System Model, version 4 (CCSM4).

The authors examine a plausible U.S. Department of Energy (DOE) biofuel feedstock goal by afforesting 50 million acres of C4 grasslands in the southeastern United States with an optimized loblolly plant functional type. Changes in sensible and latent heat fluxes are related to increased surface roughness, reduced bare-ground evaporation, and changes in stomatal conductance. In the coupled simulations, these mechanisms lead to a 1°C cooling, higher atmospheric stability, and a more shallow planetary boundary layer over the southeastern United States during the summer; in winter, a cooling of up to 0.25°C between 40° and 60°N, a weakened Aleutian low, and a wetter Australia occurs. A weakened Aleutian low shifts the North Pacific storm track poleward in the future loblolly scenarios. These local and global impacts suggest that biophysical feedbacks need to be considered when evaluating the benefits of bioenergy feedstock production.

Corresponding author address: Lisa N. Murphy, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: lmurphy@rsmas.miami.edu

Abstract

Many efforts have been taken to find energy alternatives to reduce anthropogenic influences on climate. Recent studies have shown that using land for bioenergy plantations may be more cost effective and provide a greater potential for CO2 abatement than using land for carbon sequestration. Native southern U.S. pines (i.e., loblolly) have excellent potential as bioenergy feedstocks. However, the land-cover change due to expansion of biofuels may impact climate through biophysical feedbacks. Here, the authors access the local and remote consequences of greater forest management and biofuel feedstock expansion on climate and hydrology using a global climate model, the NCAR Community Climate System Model, version 4 (CCSM4).

The authors examine a plausible U.S. Department of Energy (DOE) biofuel feedstock goal by afforesting 50 million acres of C4 grasslands in the southeastern United States with an optimized loblolly plant functional type. Changes in sensible and latent heat fluxes are related to increased surface roughness, reduced bare-ground evaporation, and changes in stomatal conductance. In the coupled simulations, these mechanisms lead to a 1°C cooling, higher atmospheric stability, and a more shallow planetary boundary layer over the southeastern United States during the summer; in winter, a cooling of up to 0.25°C between 40° and 60°N, a weakened Aleutian low, and a wetter Australia occurs. A weakened Aleutian low shifts the North Pacific storm track poleward in the future loblolly scenarios. These local and global impacts suggest that biophysical feedbacks need to be considered when evaluating the benefits of bioenergy feedstock production.

Corresponding author address: Lisa N. Murphy, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: lmurphy@rsmas.miami.edu
Save
  • Arora, V. K., and A. Montenegro, 2011: Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci., 4, 514518.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190.

  • Betts, R. A., P. D. Falloon, K. K. Goldewijk, and N. Ramankutty, 2007: Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteor., 142, 216233.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37, 449486.

  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449.

  • Bonan, G. B., D. Pollard, and S. L. Thompson, 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716718.

  • Chambers, J. Q., J. I. Fisher, H. C. Zeng, E. L. Chapman, D. B. Baker, and G. C. Hurtt, 2007: Hurricane Katrina’s carbon footprint on U. S. Gulf Coast forests. Science, 318, 11071107.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Y. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183.

  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Depro, B. M., B. C. Murray, R. J. Alig, and A. Shanks, 2008: Public land, timber harvests, and climate mitigation: Quantifying carbon sequestration potential on U.S. public timberlands. For. Ecol. Manage., 255, 11221134.

    • Search Google Scholar
    • Export Citation
  • DOE, 2003: Roadmap for agricultural biomass feedstock supply in the United States. U.S. Department of Energy Document DOE/NE-ID-11129, 100 pp. [Available online at http://www.inl.gov/technicalpublications/Documents/3323197.pdf.]

  • Eckert, A. J., J. van Heerwaarden, J. L. Wegrzyn, C. D. Nelson, J. Ross-Ibarra, S. C. Gonzalez-Martinez, and D. B. Neale, 2010: Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics, 185, 969982.

    • Search Google Scholar
    • Export Citation
  • EIA, 2008: Renewable energy annual 2006—Renewable energy trends in consumption and electricity. U.S. DOE Energy Information Administration Rep., 76 pp.

  • EIA, cited 2012: U.S. oxygenate production. U.S. DOE Energy Information Administration. [Available online at http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb1003.]

  • Fall, S., D. Niyogi, A. Gluhovsky, R. A. Pielke, E. Kalnay, and G. Rochon, 2010: Impacts of land use land cover on temperature trends over the continental United States: Assessment using the North American Regional Reanalysis. Int. J. Climatol., 30, 19801993.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310, 16741678.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. J. Pitman, M. H. England, and P. J. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483269.

    • Search Google Scholar
    • Export Citation
  • Frederick, W. J., Jr., S. J. Lien, C. E. Courchene, N. A. DeMartini, A. J. Ragauskas, and K. Iisa, 2008: Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresour. Technol., 99, 50515057.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Georgescu, M., D. B. Lobell, and C. B. Field, 2009: Potential impact of US biofuels on regional climate. Geophys. Res. Lett., 36, L21806, doi:10.1029/2009GL040477.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., D. B. Lobell, and C. B. Field, 2011: Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl. Acad. Sci. USA, 108, 43074312.

    • Search Google Scholar
    • Export Citation
  • Gibbard, S., K. Caldeira, G. Bala, T. J. Phillips, and M. Wickett, 2005: Climate effects of global land cover change. Geophys. Res. Lett., 32, L23705, doi:10.1029/2005GL024550.

    • Search Google Scholar
    • Export Citation
  • Goes, M., N. M. Urban, R. Tonkonojenkov, M. Haran, A. Schmittner, and K. Keller, 2010: What is the skill of ocean tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic meridional overturning circulation? J. Geophys. Res., 115, C12006, doi:10.1029/2010JC006407.

    • Search Google Scholar
    • Export Citation
  • Goldstein, A. H., C. D. Koven, C. L. Heald, and I. Fung, 2009: Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern US. Proc. Natl. Acad. Sci. USA, 106, 88358840.

    • Search Google Scholar
    • Export Citation
  • Hall, D. O., H. E. Mynick, and R. H. Williams, 1991: Cooling the greenhouse with bioenergy. Nature, 353, 1112.

  • Hargrove, W. W., and F. M. Hoffman, 2004: The potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ. Manage., 34, S39S60.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1998: Conventional and Bayesian approach to climate-change detection and attribution. Quart. J. Roy. Meteor. Soc., 124, 25412565.

    • Search Google Scholar
    • Export Citation
  • Hedenus, F., and C. Azar, 2009: Bioenergy plantations or long-term carbon sinks?—A model based analysis. Biomass Bioenergy, 33, 16931702.

    • Search Google Scholar
    • Export Citation
  • Herbei, R., I. W. McKeague, and K. G. Speer, 2008: Gyres and jets: Inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr., 38, 11801202.

    • Search Google Scholar
    • Export Citation
  • Huang, C. H., G. D. Kronrad, and S. L. Cheng, 2004: Economic analyses of sequestering carbon in loblolly pine, cherrybark oak, and northern red oak in the United States. Environ. Manage., 33, S187S199.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation, regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 78, 2841.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeckand, 2003: The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 279 pp.

  • Kline, K. L., and M. D. Coleman, 2010: Woody energy crops in the southeastern United States: Two centuries of practitioner experience. Biomass Bioenergy, 34, 16551666.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte-Carlo techniques. Mon. Wea. Rev., 111, 4659.

    • Search Google Scholar
    • Export Citation
  • Loarie, S. R., D. B. Lobell, G. P. Asner, Q. Mu, and C. B. Field, 2011: Direct impacts on local climate of sugar-cane expansion in Brazil. Nat. Climate Change, 1, 105109, doi:10.1038/nclimate1067.

    • Search Google Scholar
    • Export Citation
  • McCarthy, H. R., R. Oren, A. C. Finzi, D. S. Ellsworth, H.-S. Kim, K. H. Johnsen, and B. Millar, 2007: Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biol., 13, 24792497.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, and M. Collins, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM4). NCAR Tech. Rep. NCAR/TN-485+STR, 224 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Negrón-Juárez, R., D. B. Baker, H. C. Zeng, T. K. Henkel, and J. Q. Chambers, 2010: Assessing hurricane-induced tree mortality in U.S. Gulf Coast forest ecosystems. J. Geophys. Res., 115, G04030, doi:10.1029/2009JG001221.

    • Search Google Scholar
    • Export Citation
  • Novick, K., R. Oren, P. Stoy, M. Siqueira, and G. G. Katul, 2009: Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the southeastern U.S.: Implications for annual fluxes. Agric. For. Meteor., 149, 14911504.

    • Search Google Scholar
    • Export Citation
  • Perlack, R. D., L. L. Wright, A. F. Turhollow, R. L. Grahan, B. J. Stokes, and D. C. Erbach, 2005: Biomass as a feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. U.S. DOE Oak Ridge National Laboratory Rep. DOE/GO-102005-2135, 78 pp.

  • Ricciuto, D. M., K. J. Davis, and K. Keller, 2008: A Bayesian calibration of a simple carbon cycle model: The role of observations in estimating and reducing uncertainty. Global Biogeochem. Cycles, 22, GB2030, doi:10.1029/2006GB002908.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., 2006: Influences of a shift in North Pacific storm track on North American precipitation under global warming. Geophys. Res. Lett., 33, L19820, doi:10.1029/2006GL026882.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1987: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251.

    • Search Google Scholar
    • Export Citation
  • Sedjo, R. A., and D. Botkin, 1997: Using forest plantations to spare natural forests. Environment, 39, 1420.

  • Smith, W. B., J. S. Vissage, D. R. Darr, and R. M. Sheffield, 2001: Forest resources of the United States, 1997. U.S. Department of Agriculture Forest Service North Central Research Station General Tech. Rep. NC-219, 198 pp.

  • Smith, W. B., P. D. Miles, C. H. Perry, and S. A. Pugh, 2009: Forest resources of the United States, 2007. U.S. Department of Agriculture Forest Service Washington Office General Tech. Rep. WO-78, 336 pp.

  • Stoy, P. C., and Coauthors, 2006: Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern U.S. Global Change Biol., 12, 21152134.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., L. N. Murphy, F. Li, C. Bonfils, and W. J. Riley, 2012: Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation. Tellus, 64A, 15639, doi:10.3402/tellusa.v64i0.15639.

    • Search Google Scholar
    • Export Citation
  • Sun, G., and Coauthors, 2010: Energy and water balance of two contrasting loblolly pine plantations on the lower coastal plain of North Carolina, USA. For. Ecol. Manage., 259, 12991310.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and S. I. Seneviratne, 2011: The contrasting role of forests and grasslands on land-climate interaction during recent European heat waves. Proc. Topical Conf. Earth Observation for Land-Atmosphere Interaction Science, Rome, Italy, ESA, 4 pp.

  • Tucker, C. J., J. E. Pinzon, and M. E. Brown, 2004: Global inventory modeling and mapping studies. University of Maryland, College Park Global Land Cover Facility Dataset NA94apr15b.n11-VIg, 2.0.

  • Van den Dool, H. M., and R. M. Chervin, 1986: A comparison of month-to-month persistence of anomalies in a general-circulation model and in the earth’s atmosphere. J. Atmos. Sci., 43, 14541466.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, X. C., and S. S. Shen, 1999: Estimation of spatial degrees of freedom of a climate field. J. Climate, 12, 12801291.

  • Xu, L., and D. D. Baldocchi, 2003: Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol., 23, 865877.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. W., and M. Polyakov, 2010: The geographical distribution of plantation forests and land resources potentially available for pine plantations in the U.S. South. Biomass Bioenergy, 34, 16431654.

    • Search Google Scholar
    • Export Citation
  • Zhang, S. S., and H. L. Allen, 1996: Foliar nutrient dynamics of 11-year-old loblolly pine (Pinus taeda) following nitrogen fertilization. Can. J. For. Res., 26, 14261439.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J. Sun, Z. Liu, Q. Liu, and J. E. Martin, 2007: A synoptic analysis of the interannual variability of winter cyclone activity in the Aleutian low region. J. Climate, 20, 15231538.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 61 3
PDF Downloads 61 34 1