Energetics of the Tropical Atlantic Zonal Mode

N. J. Burls University of Cape Town, Cape Town, South Africa

Search for other papers by N. J. Burls in
Current site
Google Scholar
PubMed
Close
,
C. J. C Reason University of Cape Town, Cape Town, South Africa

Search for other papers by C. J. C Reason in
Current site
Google Scholar
PubMed
Close
,
P. Penven Laboratoire de Physique des Oceans (UMR 6523 CNRS, IFREMER, IRD, UBO), LMI ICEMASA, Plouzane, France, and University of Cape Town, Cape Town, South Africa

Search for other papers by P. Penven in
Current site
Google Scholar
PubMed
Close
, and
S. G. Philander Princeton University, Princeton, New Jersey

Search for other papers by S. G. Philander in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea surface temperature in the central-eastern equatorial Atlantic has a seasonal cycle far bigger than that of the Pacific, but interannual anomalies smaller than those of the Pacific. Given the amplitude of seasonal SST variability, one wonders whether the seasonal cycle in the Atlantic is so dominant that it is able to strongly influence the evolution of its interannual variability. In this study, interannual upper-ocean variability within the tropical Atlantic is viewed from an energetics perspective, and the role of ocean dynamics, in particular the role of ocean memory, within zonal mode events is investigated. Unlike in the Pacific where seasonal and interannual variability involve distinctly different processes, the results suggest that the latter is a modulation of the former in the Atlantic, whose seasonal cycle has similarities with El Niño and La Niña in the Pacific. The ocean memory mechanism associated with the zonal mode appears to operate on much shorter time scales than that associated with the El Niño–Southern Oscillation, largely being associated with interannual modulations of a seasonally active delayed negative feedback response. Differences between the El Niño–Southern Oscillation and the zonal mode can then be accounted for in terms of these distinctions. Anomalous wind power over the tropical Atlantic is shown to be a potential predictor for zonal mode events. However, because zonal mode events are due to a modulation of seasonally active coupled processes, and not independent processes operating on interannual time scales as seen in the Pacific, the lead time of this potential predictability is limited.

Corresponding author address: N. J. Burls, Department of Oceanography, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa. E-mail: nats.burls@gmail.com

Abstract

Sea surface temperature in the central-eastern equatorial Atlantic has a seasonal cycle far bigger than that of the Pacific, but interannual anomalies smaller than those of the Pacific. Given the amplitude of seasonal SST variability, one wonders whether the seasonal cycle in the Atlantic is so dominant that it is able to strongly influence the evolution of its interannual variability. In this study, interannual upper-ocean variability within the tropical Atlantic is viewed from an energetics perspective, and the role of ocean dynamics, in particular the role of ocean memory, within zonal mode events is investigated. Unlike in the Pacific where seasonal and interannual variability involve distinctly different processes, the results suggest that the latter is a modulation of the former in the Atlantic, whose seasonal cycle has similarities with El Niño and La Niña in the Pacific. The ocean memory mechanism associated with the zonal mode appears to operate on much shorter time scales than that associated with the El Niño–Southern Oscillation, largely being associated with interannual modulations of a seasonally active delayed negative feedback response. Differences between the El Niño–Southern Oscillation and the zonal mode can then be accounted for in terms of these distinctions. Anomalous wind power over the tropical Atlantic is shown to be a potential predictor for zonal mode events. However, because zonal mode events are due to a modulation of seasonally active coupled processes, and not independent processes operating on interannual time scales as seen in the Pacific, the lead time of this potential predictability is limited.

Corresponding author address: N. J. Burls, Department of Oceanography, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa. E-mail: nats.burls@gmail.com
Save
  • Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/70720.pdf.]

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172.

  • Bunge, L., and A. J. Clarke, 2009: Seasonal propagation of sea level along the equator in the Atlantic. J. Phys. Oceanogr., 39, 10691073.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., 2010: The role of ocean dynamics within tropical Atlantic climate variability. Ph.D. thesis, University of Cape Town, 225 pp.

  • Burls, N. J., C. J. C. Reason, P. Penven, and S. G. Philander, 2011: Similarities between the tropical Atlantic seasonal cycle and ENSO: An energetics perspective. J. Geophys. Res., 116, C11010, doi:10.1029/2011JC007164.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24, 888903.

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, X. Cao, and B. S. Giese, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–1995. Part I: Methodology. J. Phys. Oceanogr., 30, 294309.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and G. Philander, 1994: A coupled ocean–atmosphere instability of relevance to the seasonal cycle. J. Atmos. Sci., 51, 36273648.

    • Search Google Scholar
    • Export Citation
  • Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13, 21952216.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2006a: Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Climate, 19, 51225174.

    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006b: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328.

    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2009: Seasonal cycle in the upper equatorial Atlantic Ocean. J. Geophys. Res., 114, C09016, doi:10.1029/2009JC005418.

    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2010: Equatorial Atlantic interannual variability: Role of heat content. J. Geophys. Res., 115, C09020, doi:10.1029/2010JC006304.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2007: Net energy dissipation rates in the tropical ocean and ENSO dynamics. J. Climate, 20, 11081117.

  • Fedorov, A. V., S. L. Harper, S. G. H. Philander, B. Winter, and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84, 911919.

    • Search Google Scholar
    • Export Citation
  • Florenchie, P., J. R. E. Lutjeharms, C. J. C. Reason, S. Masson, and M. Rouault, 2003: The source of Benguela Niños in the South Atlantic Ocean. Geophys. Res. Lett., 30, 1505, doi:10.1029/2003GL017172.

    • Search Google Scholar
    • Export Citation
  • Florenchie, P., C. J. C. Reason, J. R. E. Lutjeharms, M. Rouault, C. Roy, and S. Masson, 2004: Evolution of interannual warm and cold events in the southeast Atlantic Ocean. J. Climate, 17, 23182334.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2010a: Interaction between the Atlantic meridional and Niño modes. Geophys. Res. Lett., 37, L18604, doi:10.1029/2010GL044001.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2010b: Abrupt equatorial wave-induced cooling of the Atlantic cold tongue in 2009. Geophys. Res. Lett., 37, L24605, doi:10.1029/2010GL045522.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to SST anomalies and thermocline variability. Tellus, 29, 289305.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and S. G. H. Philander, 2000: The energetics of El Niño and La Niña. J. Climate, 13, 14961516.

  • Hastenrath, S., 1984: Interannual variability and annual cycle mechanisms of circulation and climate in the tropical Atlantic sector. Mon. Wea. Rev., 112, 10971107.

    • Search Google Scholar
    • Export Citation
  • Hisard, P., 1980: Observation de réponses de type “El Niño” dans l’Atlantique tropical oriental, Golfe de Guinée (Observations of an El Niño–like response in the tropical Atlantic, Gulf of Guinea). Oceanol. Acta, 3, 6978.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible stratified fluid. J. Fluid Mech., 107, 221225.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1998: Mixing and available potential energy in a Boussinesq ocean. J. Phys. Oceanogr., 28, 669678.

  • Illig, S., and B. Dewitte, 2006: Local coupled equatorial variability versus remote ENSO forcing in an intermediate coupled model of the tropical Atlantic. J. Climate, 19, 52275252.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrostatic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., and M. Latif, 2007: Understanding equatorial Atlantic interannual variability. J. Climate, 20, 131142.

  • Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9, 91112.

  • Kushnir, Y., W. A. Robinson, P. Chang, and A. W. Robertson, 2006: The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Climate, 19, 59495970.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8, 952964.

  • Latif, M., and A. Grötzner, 2000: The equatorial Atlantic oscillation and its response to ENSO. Climate Dyn., 16, 213218.

  • Lee, S.-K., and G. T. Csanady, 1999: Warm water formation and escape in the upper tropical Atlantic Ocean 2. A numerical model study. J. Geophys. Res., 104 (C12), 29 57329 590.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167.

  • Lübbecke, J. F., C. W. Böning, N. S. Keenlyside, and S. P. Xie, 2010: On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic anticyclone. J. Geophys. Res., 115, C09015, doi:10.1029/2009JC005964.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120.

    • Search Google Scholar
    • Export Citation
  • Marin, F., G. Caniaux, H. Giordani, B. Bourlés, Y. Gouriou, and E. Key, 2009: Why were sea surface temperatures so different in the eastern equatorial Atlantic in June 2005 and 2006? J. Phys. Oceanogr., 39, 14161431.

    • Search Google Scholar
    • Export Citation
  • Merle, J., 1980: Seasonal heat budget in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 10, 464469.

  • Molemaker, M. J., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., S. E. Zebiak, and B. P. Kirtman, 2003: Local and remote sources of tropical Atlantic variability as inferred from the results of a hybrid ocean-atmosphere coupled model. Geophys. Res. Lett., 30, 8008, doi:10.1029/2002GL015785.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and S.-P. Xie, 2006: Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J. Climate, 19, 58595874.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., S. C. Ascher, S. Levitus, and J. P. Peixoto, 1989: New estimates of the available potential energy in the world ocean. J. Geophys. Res., 94 (C3), 31873200.

    • Search Google Scholar
    • Export Citation
  • Peter, A., M. L. Henaff, Y. P. Y. du Penhoat, C. Menkes, F. Marin, J. Vialard, G. Caniaux, and A. Lazar, 2006: A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J. Geophys. Res., 111, C06014, doi:10.1029/2005JC003157.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and R. C. Pacanowski, 1986a: A model of the seasonal cycle in the tropical Atlantic Ocean. J. Geophys. Res., 91, 14 19214 206.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and R. C. Pacanowski, 1986b: The mass and heat budgets in a model of the tropical Atlantic. J. Geophys. Res., 91, 14 21214 220.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reason, C., P. Florenchie, M. Rouault, and J. Veitch, 2006: Influences of large scale climate modes and Agulhas system variability on the BCLME region. Benguela—Predicting a Large Marine Ecosystem, V. Shannon et al., Eds., Vol. 14, Large Marine Ecosystems, Elsevier, 223–238.

  • Reid, R., B. Elliot, and D. Olson, 1981: Available potential energy: A clarification. J. Phys. Oceanogr., 11, 1529.

  • Ruiz-Barradas, A., J. A. Carton, and S. Nigam, 2000: Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Climate, 13, 32853297.

    • Search Google Scholar
    • Export Citation
  • Schouten, M. W., R. P. Matano, and T. P. Strub, 2005: A description of the seasonal cycle of the equatorial Atlantic from altimeter data. Deep-Sea Res., 52, 477493.

    • Search Google Scholar
    • Export Citation
  • Servain, J., J. Picaut, and J. Merle, 1982: Evidence of remote forcing in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 12, 457463.

    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404.

    • Search Google Scholar
    • Export Citation
  • Vauclair, F., and Y. du Penhoat, 2001: Interannual variability of the upper layer of the tropical Atlantic Ocean from in situ data between 1979 and 1999. Climate Dyn., 17, 527546.

    • Search Google Scholar
    • Export Citation
  • Vauclair, F., Y. du Penhoat, and G. Reverdin, 2004: Heat and mass budgets of the warm upper layer of the tropical Atlantic Ocean in 1979–99. J. Phys. Oceanogr., 34, 903919.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6, 15671586.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1043 567 152
PDF Downloads 309 73 5