Marine Boundary Layer Cloud Observations in the Azores

Jasmine Rémillard Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Jasmine Rémillard in
Current site
Google Scholar
PubMed
Close
,
Pavlos Kollias Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
,
Edward Luke Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York

Search for other papers by Edward Luke in
Current site
Google Scholar
PubMed
Close
, and
Robert Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The recent deployment of the Atmospheric Radiation Measurement Program (ARM) Mobile Facility at Graciosa Island, Azores, in the context of the Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign added the most extensive (19 months) and comprehensive dataset of marine boundary layer (MBL) clouds to date. Cloud occurrence is high (60%–80%), with a summertime minimum. Liquid precipitation is frequently present (30%–40%), mainly in the form of virga. Boundary layer clouds are the most frequently observed cloud type (40%–50%) with a maximum of occurrence during the summer and fall months under the presence of anticyclonic conditions. Cumulus clouds are the most frequently occurring MBL cloud type (20%) with cumulus under stratocumulus layers (10%–30%) and single-layer stratocumulus (0%–10%) following in frequency of occurrence. A stable transition layer in the subcloud layer is commonly observed (92% of the soundings). Cumulus cloud bases and stratocumulus cloud tops correlate very well with the top of the transition layer and the inversion base, respectively. Drizzling stratocumulus layers are thicker (350–400 m) and have higher liquid water path (75–150 g m−2) than their nondrizzling counterparts (100–250 m and 30–75 g m−2, respectively). The variance of the vertical air motion is maximum near the cloud base and is higher at night. The updraft mass flux is around 0.17 kg m−2 s−1 with 40%–60% explained by coherent updraft structures. Despite a high frequency of stratocumulus clouds in the Azores, the MBL is almost never well mixed and is often cumulus coupled.

Corresponding author address: Jasmine Rémillard, Department of Atmospheric and Oceanic Sciences, Room 945, Burnside Hall, 805 Sherbrooke Street West, Montreal QC H3A 2K6, Canada. E-mail: jasmine.remillard@mail.mcgill.ca

Abstract

The recent deployment of the Atmospheric Radiation Measurement Program (ARM) Mobile Facility at Graciosa Island, Azores, in the context of the Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign added the most extensive (19 months) and comprehensive dataset of marine boundary layer (MBL) clouds to date. Cloud occurrence is high (60%–80%), with a summertime minimum. Liquid precipitation is frequently present (30%–40%), mainly in the form of virga. Boundary layer clouds are the most frequently observed cloud type (40%–50%) with a maximum of occurrence during the summer and fall months under the presence of anticyclonic conditions. Cumulus clouds are the most frequently occurring MBL cloud type (20%) with cumulus under stratocumulus layers (10%–30%) and single-layer stratocumulus (0%–10%) following in frequency of occurrence. A stable transition layer in the subcloud layer is commonly observed (92% of the soundings). Cumulus cloud bases and stratocumulus cloud tops correlate very well with the top of the transition layer and the inversion base, respectively. Drizzling stratocumulus layers are thicker (350–400 m) and have higher liquid water path (75–150 g m−2) than their nondrizzling counterparts (100–250 m and 30–75 g m−2, respectively). The variance of the vertical air motion is maximum near the cloud base and is higher at night. The updraft mass flux is around 0.17 kg m−2 s−1 with 40%–60% explained by coherent updraft structures. Despite a high frequency of stratocumulus clouds in the Azores, the MBL is almost never well mixed and is often cumulus coupled.

Corresponding author address: Jasmine Rémillard, Department of Atmospheric and Oceanic Sciences, Room 945, Burnside Hall, 805 Sherbrooke Street West, Montreal QC H3A 2K6, Canada. E-mail: jasmine.remillard@mail.mcgill.ca
Save
  • Abel, S. J., D. N. Walters, and G. Allen, 2010: Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx. Atmos. Chem. Phys., 10, 10 54110 559, doi:10.5194/acp-10-10541-2010.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. W. Johnson, W. H. Schubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904.

    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Schmidt, and F. Ostapoff, 1974: The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic Ocean. Bound.-Layer Meteor., 6, 129150.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977.

  • Caldwell, P., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791.

    • Search Google Scholar
    • Export Citation
  • Carman, J. K., D. L. Rossiter, D. Khelif, H. H. Jonsson, I. C. Faloona, and P. Y. Chuang, 2012: Observational constraints on entrainment and the entrainment interface layer in stratocumulus. Atmos. Chem. Phys. Discuss., 12, 817868, doi:10.5194/acpd-12-817-2012.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett, 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12, 201229.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918.

    • Search Google Scholar
    • Export Citation
  • de Laat, A. T. J., and P. Duynkerke, 1998: Analysis of ASTEX-stratocumulus observational data using a mass-flux approach. Bound.-Layer Meteor., 86, 6387.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci., 54, 21572173.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and S.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590.

    • Search Google Scholar
    • Export Citation
  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62, 32683285.

    • Search Google Scholar
    • Export Citation
  • Garstang, M., and A. K. Betts, 1974: A review of the tropical boundary layer and cumulus convection: Structure, parameterization and modeling. Bull. Amer. Meteor. Soc., 55, 11951205.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., B. A. Albrecht, C. W. Fairall, and R. A. Weller, 2009: Climatology of surface meteorology, surface fluxes, cloud fraction, and radiative forcing over the southeast Pacific from buoy observations. J. Climate, 22, 55275540.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., B. A. Albrecht, and P. Kollias, 2010: Vertical velocity structure of nonprecipitating continental boundary layer stratocumulus clouds. J. Geophys. Res., 115, D13204, doi:10.1029/2009JD013091.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., M. A. Miller, and L. DiPretore, 2011: Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J. Geophys. Res., 116, D16206, doi:10.1029/2010JD015344.

    • Search Google Scholar
    • Export Citation
  • Guo, H., Y. Liu, P. H. Daum, G. I. Senum, and W. Tao, 2008: Characteristics of vertical velocity in marine stratocumulus: Comparison of large eddy simulations with observations. Environ Res. Lett., 3, 045020, doi:10.1088/1748-9326/3/4/04520.

    • Search Google Scholar
    • Export Citation
  • Hasanean, H. M., 2004: Variability of the North Atlantic subtropical high and associations with tropical sea-surface temperature. Int. J. Climatol., 24, 945957.

    • Search Google Scholar
    • Export Citation
  • Hignett, P., 1991: Observations of diurnal variation in a cloud-capped marine boundary layer. J. Atmos. Sci., 48, 14741482.

  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Kollias, P., and B. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations. J. Atmos. Sci., 57, 24172434.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58, 17501766.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, E. P. Luke, K. L. Johnson, K. P. Moran, K. B. Widener, and B. A. Albrecht, 2007a: The Atmospheric Radiation Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 11991214.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., G. Tselioudis, and B. A. Albrecht, 2007b: Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res., 112, D09116, doi:10.1029/2006JD007307.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., J. Rémillard, E. Luke, and W. Szyrmer, 2011a: Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and applications. J. Geophys. Res., 116, D13201, doi:10.1029/2010JD015237.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., W. Szyrmer, J. Rémillard, and E. Luke, 2011b: Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution. J. Geophys. Res., 116, D13203, doi:10.1029/2010JD015238.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci., 66, 29532972.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887916.

  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7, 464479.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 1994: Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path. Proc. Fifth Symp. on Global Change Studies, Nashville, TN, Amer. Meteor. Soc., 262–269.

  • Liu, Z., and Coauthors, 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26, 11981213.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, D. Leon, and G. Vali, 2005: Turbulence measurement in marine stratocumulus with Doppler radar. Quart. J. Roy. Meteor. Soc., 131, 20632080.

    • Search Google Scholar
    • Export Citation
  • Luke, E. P., P. Kollias, and M. D. Shupe, 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.

    • Search Google Scholar
    • Export Citation
  • MacVean, M. K., and P. J. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47, 10121030.

    • Search Google Scholar
    • Export Citation
  • Markowicz, K. M., P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, 2008: Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. J. Atmos. Oceanic Technol., 25, 928944.

    • Search Google Scholar
    • Export Citation
  • Mead, J. B., and K. B. Widener, 2005: W-band ARM cloud radar. Preprints, 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.3. [Available online at http://ams.confex.com/ams/pdfpapers/95978.pdf.]

  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1989: The structure of radiatively driven convection in stratocumulus. Quart. J. Roy. Meteor. Soc., 115, 487511.

  • Norris, J. R., and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. J. Climate, 13, 245256.

    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley Jr., D. H. Lenschow, C. W. Fairall, and R. A. Kropfli, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 12901301.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C.-H. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49, 19031923.

  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809.

    • Search Google Scholar
    • Export Citation
  • Serpetzoglou, E., B. A. Albrecht, P. Kollias, and C. W. Fairall, 2008: Boundary layer, cloud, and drizzle variability in the southeast Pacific stratocumulus regime. J. Climate, 21, 61916214.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2007: On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci., 64, 29162931.

  • Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Ulaby, F. T., R. K. Moore, and A. K. Fung, 1981: Microwave Remote Sensing Fundamentals and Radiometry. Vol. 1, Microwave Remote Sensing: Active and Passive, Addison-Wesley, 456 pp.

  • Wang, J., and W. B. Rossow, 1995: Determination of cloud vertical structure from upper-air observations. J. Appl. Meteor., 34, 22432258.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29, 2092, doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504.

    • Search Google Scholar
    • Export Citation
  • Yin, B., and B. A. Albrecht, 2000: Spatial variability of atmospheric boundary layer structure over the eastern equatorial Pacific. J. Climate, 13, 15741592.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., A. M. Vogelmann, M. P. Jensen, W. D. Collins, and E. P. Luke, 2010: Relating satellite-observed cloud properties from MODIS to meteorological conditions for marine boundary layer clouds. J. Climate, 23, 13741391.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1472 625 68
PDF Downloads 691 140 15