Relative Contributions of Synoptic and Low-Frequency Eddies to Time-Mean Atmospheric Moisture Transport, Including the Role of Atmospheric Rivers

Matthew Newman CIRES Climate Diagnostics Center, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew Newman in
Current site
Google Scholar
PubMed
Close
,
George N. Kiladis Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
,
Klaus M. Weickmann Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Klaus M. Weickmann in
Current site
Google Scholar
PubMed
Close
,
F. Martin Ralph Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
, and
Prashant D. Sardeshmukh CIRES Climate Diagnostics Center, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relative contributions to mean global atmospheric moisture transport by both the time-mean circulation and by synoptic and low-frequency (periods greater than 10 days) anomalies are evaluated from the vertically integrated atmospheric moisture budget based on 40 yr of “chi corrected” NCEP–NCAR reanalysis data. In the extratropics, while the time-mean circulation primarily moves moisture zonally within ocean basins, low-frequency and synoptic anomalies drive much of the mean moisture transport both from ocean to land and toward the poles. In particular, during the cool-season low-frequency variability is the largest contributor to mean moisture transport into southwestern North America, Europe, and Australia. While some low-frequency transport originates in low latitudes, much is of extratropical origin due to large-scale atmospheric anomalies that extract moisture from the northeast Pacific and Atlantic Oceans. Low-frequency variability is also integral to the Arctic (latitudes > 70°N) mean moisture budget, especially during summer, when it drives mean poleward transport from relatively wet high-latitude continental regions. Synoptic variability drives about half of the mean poleward moisture transport in the midlatitudes of both hemispheres, consistent with simple “lateral mixing” arguments. Extratropical atmospheric transport is also particularly focused within “atmospheric rivers” (ARs), relatively narrow poleward-moving moisture plumes associated with frontal dynamics. AR moisture transport, defined by compositing fluxes over those locations and times where column-integrated water vapor and poleward low-level wind anomalies are both positive, represents most of the total extratropical meridional moisture transport. These results suggest that understanding potential anthropogenic changes in the earth ’s hydrological cycle may require understanding corresponding changes in atmospheric variability, especially on low-frequency time scales.

Corresponding author address: Matt Newman, CIRES, University of Colorado, 216 UCB, Boulder, CO 80309-0216. E-mail: matt.newman@noaa.gov

Abstract

The relative contributions to mean global atmospheric moisture transport by both the time-mean circulation and by synoptic and low-frequency (periods greater than 10 days) anomalies are evaluated from the vertically integrated atmospheric moisture budget based on 40 yr of “chi corrected” NCEP–NCAR reanalysis data. In the extratropics, while the time-mean circulation primarily moves moisture zonally within ocean basins, low-frequency and synoptic anomalies drive much of the mean moisture transport both from ocean to land and toward the poles. In particular, during the cool-season low-frequency variability is the largest contributor to mean moisture transport into southwestern North America, Europe, and Australia. While some low-frequency transport originates in low latitudes, much is of extratropical origin due to large-scale atmospheric anomalies that extract moisture from the northeast Pacific and Atlantic Oceans. Low-frequency variability is also integral to the Arctic (latitudes > 70°N) mean moisture budget, especially during summer, when it drives mean poleward transport from relatively wet high-latitude continental regions. Synoptic variability drives about half of the mean poleward moisture transport in the midlatitudes of both hemispheres, consistent with simple “lateral mixing” arguments. Extratropical atmospheric transport is also particularly focused within “atmospheric rivers” (ARs), relatively narrow poleward-moving moisture plumes associated with frontal dynamics. AR moisture transport, defined by compositing fluxes over those locations and times where column-integrated water vapor and poleward low-level wind anomalies are both positive, represents most of the total extratropical meridional moisture transport. These results suggest that understanding potential anthropogenic changes in the earth ’s hydrological cycle may require understanding corresponding changes in atmospheric variability, especially on low-frequency time scales.

Corresponding author address: Matt Newman, CIRES, University of Colorado, 216 UCB, Boulder, CO 80309-0216. E-mail: matt.newman@noaa.gov
Save
  • Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 29632978.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and S. Hagemann, 2004: Sensitivity of large-scale atmospheric analyses to humidity observations and its impact on the global water cycle and tropical and extratropical weather systems in ERA40. Tellus, 56A, 202217.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, and P. Viterbo, 1999: Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. J. Geophys. Res., 104 (D16), 19 29319 306.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053.

    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and P. D. Sardeshmukh, 1995: Barotropic Rossby wave dynamics of zonally varying upper-level flows during northern winter. J. Atmos. Sci., 52, 37793796.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, doi:10.1029/2004GL021581.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183.

  • Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333342, doi:10.1007/s00382-008-0448-9.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., C. Henin, V. Porte, and P. Arkin, 1996: Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep-Sea Res. I, 43, 11231141, doi:10.1016/0967-0637(96)00048-9.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3, 762765, doi:10.1038/NGEO984.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Drumond, A., R. Nieto, and L. Gimeno, 2011: On the contribution of the tropical Western Hemisphere warm pool source of moisture to the Northern Hemisphere precipitation through a Lagrangian approach. J. Geophys. Res., 116, D00Q04, doi:10.1029/2010JD015397.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., A. Drummond, R. Nieto, R. M. Trigo, and A. Stohl, 2010: On the origin of continental precipitation. Geophys. Res. Lett., 37, L13804, doi:10.1029/2010GL043712.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., Y. Chen, and Z. Otles, 1997: Atmospheric water vapor transport in NCEP–NCAR reanalyses: Comparison with river discharge in the central United States. Bull. Amer. Meteor. Soc., 78, 19571969.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., K. C. Mo, and S. D. Schubert, 1996: The moisture budget of the central United States in spring as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. Mon. Wea. Rev., 124, 939963.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. J. Phys. Oceanogr., 23, 24282446.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2000: Rainfall and radiative heating rate estimates from TOGA COARE atmospheric budgets. J. Atmos. Sci., 57, 14971514.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., M. T. Coe, and J. A. Foley, 2000: Surface water balance of the continental United States, 1963–1995: Regional evaluation of a terrestrial biosphere model and the NCEP/NCAR reanalysis. J. Geophys. Res., 105 (D17), 22 39322 425.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309.

    • Search Google Scholar
    • Export Citation
  • Min, W., and S. Schubert, 1997: The climate signal in regional moisture fluxes: A comparison of three global data assimilation products. J. Climate, 10, 26232642.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1996: Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. J. Climate, 9, 15311545.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., M. Chelliah, M. L. Carrera, R. W. Higgins, and W. Ebisuzaki, 2005: Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydrometeor., 6, 710728.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. Lundquist, and M. D. Dettinger, 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2008: Tropical and stratospheric influences on extratropical short-term climate variability. J Climate, 21, 43264347.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and J. W. Bergman, 2000: An assessment of the NCEP, NASA and ECMWF, reanalyses over the tropical west Pacific warm pool. Bull. Amer. Meteor. Soc., 81, 4148.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 29582977.

    • Search Google Scholar
    • Export Citation
  • O ’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., T. Shaw, and F. Laliberté, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 17661783.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pierrehumbert, R. T., 1998: Lateral mixing as a source of subtropical water vapor. Geophys. Res. Lett., 25, 151154.

  • Pierrehumbert, R. T., 2002: The hydrologic cycle in deep-time climate problems. Nature, 419, 191198.

  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California ’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickman, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., and A. Betts, 2000: NCEP–NCAR and ECMWF reanalysis surface water and energy budgets for the Mississippi River basin. J. Hydrometeor., 1, 8894.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., S.-C. Chen, A. K. Guetter, and K. P. Georgakakos, 1994: Large-scale aspects of the United States hydrologic cycle. Bull. Amer. Meteor. Soc., 75, 15891610.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., M. Kanamitsu, and R. Stewart, 2002: CSE water and energy budgets in the NCEP–DOE Reanalysis II. J. Hydrometeor., 3, 227248.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., 1993: The baroclinic “chi” problem and its application to the diagnosis of atmospheric heating rates. J. Atmos. Sci., 50, 10991112.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112, 25242529.

  • Sardeshmukh, P. D., and B. L. Liebmann, 1993: An assessment of low-frequency variability in the tropics as indicated by some proxies of tropical convection. J. Climate, 6, 569575.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., M. Newman, and C. R. Winkler, 1999: Dynamically consistent estimates of diabatic heating. Proc. 24th Annual Climate Diagnostics and Prediction Workshop, Tucson, AZ, NOAA, 172–175.

  • Schneider, T., K. L. Smith, P. A. O ’Gorman, and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 59185933.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O ’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, doi:10.1029/2005JC003424.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, A. G. Slater, M. Steele, J. Zhang, and K. E. Trenberth, 2007: The large-scale energy budget of the Arctic. J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and O. Pauluis, 2012: Tropical and subtropical meridional latent heat transports by disturbances to the zonal mean and their role in the general circulation. J. Atmos. Sci., 69, 18721889.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stohl, A., and P. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between earth ’s ocean basins and river catchments. J. Hydrometeor., 6, 961984.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N-A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722.

  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, doi:10.3354/cr00953.

  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14, 213231.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. T. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924.

    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., and B. J. Hoskins, 2008: Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 16381652.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., 1967: The half-yearly oscillation in middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24, 472486.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. Paegle, 1996: Impact of analysis uncertainty upon regional atmospheric moisture flux. J. Geophys. Res., 101 (D3), 72917303.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci., 55, 237258.

  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14, 44744494.

    • Search Google Scholar
    • Export Citation
  • Yanai, M. S., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yeh, P. J.-F., M. Irizarry, and E. A. B. Eltahir, 1998: Hydroclimatology of Illinois: A comparison of monthly evapotranspiration estimates based on atmospheric water balance and soil water balance. J. Geophys. Res., 103 (D16), 19 82319 837.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1237 378 30
PDF Downloads 1231 308 32