The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds

A. Bodas-Salcedo Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by A. Bodas-Salcedo in
Current site
Google Scholar
PubMed
Close
,
K. D. Williams Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by K. D. Williams in
Current site
Google Scholar
PubMed
Close
,
P. R. Field Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by P. R. Field in
Current site
Google Scholar
PubMed
Close
, and
A. P. Lock Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by A. P. Lock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors study the role of clouds in the persistent bias of surface downwelling shortwave radiation (SDSR) in the Southern Ocean in the atmosphere-only version of the Met Office model. The reduction of this bias in the atmosphere-only version is important to minimize sea surface temperature biases when the atmosphere model is coupled to a dynamic ocean. The authors use cloud properties and radiative fluxes estimates from the International Satellite Cloud Climatology Project (ISCCP) and apply a clustering technique to classify clouds into different regimes over the Southern Ocean. Then, they composite the cloud regimes around cyclone centers, which allows them to study the role of each cloud regime in a mean composite cyclone. Low- and midlevel clouds in the cold-air sector of the cyclones are responsible for most of the bias. Based on this analysis, the authors develop and test a new diagnosis of shear-dominated boundary layers. This change improves the simulation of the SDSR through a better simulation of the frequency of occurrence of the cloud regimes in the cyclone composite. Substantial biases in the radiative properties of the midtop and stratocumulus regimes are still present, which suggests the need to increase the optical depth of the low-level cloud with moderate optical depth and cloud with tops at midlevels.

Corresponding author address: A. Bodas-Salcedo, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: alejandro.bodas@metoffice.gov.uk

Abstract

The authors study the role of clouds in the persistent bias of surface downwelling shortwave radiation (SDSR) in the Southern Ocean in the atmosphere-only version of the Met Office model. The reduction of this bias in the atmosphere-only version is important to minimize sea surface temperature biases when the atmosphere model is coupled to a dynamic ocean. The authors use cloud properties and radiative fluxes estimates from the International Satellite Cloud Climatology Project (ISCCP) and apply a clustering technique to classify clouds into different regimes over the Southern Ocean. Then, they composite the cloud regimes around cyclone centers, which allows them to study the role of each cloud regime in a mean composite cyclone. Low- and midlevel clouds in the cold-air sector of the cyclones are responsible for most of the bias. Based on this analysis, the authors develop and test a new diagnosis of shear-dominated boundary layers. This change improves the simulation of the SDSR through a better simulation of the frequency of occurrence of the cloud regimes in the cyclone composite. Substantial biases in the radiative properties of the midtop and stratocumulus regimes are still present, which suggests the need to increase the optical depth of the low-level cloud with moderate optical depth and cloud with tops at midlevels.

Corresponding author address: A. Bodas-Salcedo, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: alejandro.bodas@metoffice.gov.uk
Save
  • Abel, S. J., D. N. Walters, and G. Allen, 2010: Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx. Atmos. Chem. Phys., 10, 10 541–10 559, doi:10.5194/acp-10-10541-2010.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., and Z. Li, 1995: Improved simulation of clear-sky shortwave radiative transfer in the CCC-GCM. J. Climate, 8, 2213–2223.

    • Search Google Scholar
    • Export Citation
  • Bauer, M., and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 1652–1672.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., M. A. Ringer, and A. Jones, 2008a: Evaluation of the surface radiation budget in the atmospheric component of the Hadley Centre Global Environmental Model (HadGEM1). J. Climate, 21, 4723–4748.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, M. A. Ringer, K. D. Williams, S. F. Milton, and D. R. Wilson, 2008b: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 1023–1043.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., R. J. Beare, J. M. Edwards, A. P. Lock, S. J. Keogh, S. F. Milton, and D. N. Walters, 2008: Upgrades to the boundary-layer scheme in the Met Office numerical weather prediction model. Bound.-Layer Meteor., 128, 117–132, doi:10.1007/s10546-008-9275-0.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modelling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, doi:10.1029/2008GL034207.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, G. Cesana, J.-L. Dufresne, P. Minnis, C. J. Stubenrauch, and S. Zeng, 2010: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., R. Vautard, H. Chepfer, M. Haeffelin, J. Dudhia, Y. Wanherdrick, Y. Morille, and A. Protat, 2006: Ability of MM5 to simulate ice clouds: Systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Mon. Wea. Rev., 134, 897–918.

    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and J. M. Crowther, 1999: Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre climate model. J. Geophys. Res., 104 (D2), 2051–2057.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Stainforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759–1782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salcedo, and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 2064–2078, doi:10.1002/qj.882.

    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 2005: The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens. Environ., 97, 495–518, doi:10.1016/j.rse.2005.06.006.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–720.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land-surface scheme. J. Hydrometeor., 4, 530–543.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233–254.

  • Field, P. R., A. Bodas-Salcedo, and M. E. Brooks, 2011: Using model analysis and satellite data to assess cloud and precipitation in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 1501–1515, doi:10.1002/qj.858.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J., and C. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722–1733.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., 2005: Surface energy balance errors in AGCMs: Implications for ocean-atmosphere model coupling. Geophys. Res. Lett., 32, L15708, doi:10.1029/2005GL023061.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., and J. R. Norris, 2010: Cluster analysis of midlatitude oceanic cloud regimes: Mean properties and temperature sensitivity. Atmos. Chem. Phys., 10, 6435–6459, doi:10.5194/acp-10-6435-2010.

    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, M. J. Reeder, and J. Haynes, 2011: The three-dimensional distribution of clouds around Southern Hemisphere extratropical cyclones. Geophys. Res. Lett., 38, L21805, doi:10.1029/2011GL049091.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 2001: Cloud-base fluxes in the cumulus-capped boundary layer. Quart. J. Roy. Meteor. Soc., 127, 407–421.

  • Gregory, D., and P. R. Rowntree, 1990: A mass-flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118, 1483–1506.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and S. Allen, 1991: The effect of convective downdraughts upon NWP and climate simulations. Proc. Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 122–123.

  • Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens, 2007: A multi-purpose radar simulation package: Quickbeam. Bull. Amer. Meteor. Soc., 88, 1723–1727.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011: Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 5061–5080.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. J. Illingworth, E. J. O’Connor, and J. P. V. Poiares Baptista, 2003: Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar. Quart. J. Roy. Meteor. Soc., 129, 2117–2134, doi:10.1256/qj.01.209.

    • Search Google Scholar
    • Export Citation
  • Im, E., C. Wu, and S. L. Durden, 2005: Cloud profiling radar for the CloudSat mission. IEEE Aerosp. Electron. Syst. Mag., 20, 15–18, doi:10.1109/MAES.2005.1581095.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442–458, doi:10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 2514–2531.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell, 2000: Impact of a new scheme for optical properties of ice crystals on climates of two GCMs. J. Geophys. Res., 105 (D8), 10 063–10 079.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and H. G. Leighton, 1993: Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophys. Res., 98 (D3), 4919–4930.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., 2001: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129, 1148–1163.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187–3199.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., and T. Ackerman, 2010: An analysis of cloud cover in multiscale modeling framework global climate model simulations using 4 and 1 km horizontal grids. J. Geophys. Res., 115, D16207, doi:10.1029/2009JD013423.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. L. Stephens, 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519–533.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, doi:10.1029/2009JD013422.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. R. Bush, A. R. Brown, A. P. Lock, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128, 3200–3217.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer, 2005: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc., 86, 89–93.

    • Search Google Scholar
    • Export Citation
  • Moroney, C., R. Davies, and J.-P. Muller, 2002: Operational retrieval of cloud-top heights using MISR data. IEEE Trans. Geosci. Remote Sens., 40, 1532–1540, doi:10.1109/TGRS.2002.801150.

    • Search Google Scholar
    • Export Citation
  • Muller, J.-P., A. Mandanayake, C. Moroney, R. Davies, D. J. Diner, and S. Paradise, 2002: MISR stereoscopic image matchers: Techniques and results. IEEE Trans. Geosci. Remote Sens., 40, 1547–1559, doi:10.1109/TGRS.2002.801160.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, and M. Bauer, 2006: Observational constraints on the cloud thermodynamic phase in midlatitude storms. J. Climate, 19, 5273–5288.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling GCM-simulated and satellite-observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 4699–4720.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., S. Cole, R. M. Forbes, R. Moore, and D. Boswell, 2009: Use of high-resolution NWP rainfall and river flow forecasts for advance warning of the Carlisle flood, north-west England. Meteor. Appl., 16, 23–34, doi:10.1002/met.94.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2287.

  • Senior, C. A., and J. F. B. Mitchell, 1993: Carbon dioxide and climate: The impact of cloud parameterization. J. Climate, 6, 393–418.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2010: Synergies between numerical weather prediction and general circulation climate models. The Development of Atmospheric General Circulation Models: Complexity, Synthesis, and Computation, L. Donner, R. Somerville, and W. Schubert, Eds., Cambridge University Press, 76–116.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440–454.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 1213–1271, doi:10.5194/gmd-4-919-2011.

    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J. J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905–922.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2005: Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys. Res. Lett., 32, L07704, doi:10.1029/2005GL022421.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2008: Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus, 60A, 932–945, doi:10.1111/j.1600-0870.2008.00342.x.

    • Search Google Scholar
    • Export Citation
  • Wilkinson, J. M., A. N. F. Porson, F. J. Bornemann, M. Weeks, P. R. Field, and A. P. Lock, 2012: Improved microphysical parametrization of drizzle and fog for operational forecasting using the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.1975, in press.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231–250, doi:10.1007/s00382-007-0232-2.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141–157, doi:10.1007/s00382-008-0443-1.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607–1636.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008a: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 2093–2107, doi:10.1002/qj.333.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, C. J. Morcrette, and A. Bodas-Salcedo, 2008b: PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Quart. J. Roy. Meteor. Soc., 134, 2109–2125, doi:10.1002/qj.332.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 1211–1229.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608–624.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 3736–3754.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Klein, G. G. Mace, and J. Boyle, 2007: Cluster analysis of tropical clouds using CloudSat data. Geophys. Res. Lett., 34, L12813, doi:10.1029/2007GL029336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2825 1415 219
PDF Downloads 738 116 12