The Role of Oceanic Feedback in the Climate Response to Doubling CO2

Jian Lu Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Calverton, Maryland, and Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Jian Lu in
Current site
Google Scholar
PubMed
Close
and
Bin Zhao Global Modeling and Assimilation Office, NASA Goddard Space and Flight Center, Camp Greenbelt, Maryland, and Climate, Ocean and Sea-Ice Modeling (COSIM) Project, Group T-3, Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Bin Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Two suites of partial coupling experiments are devised with the upper-ocean dynamics version (UOM) of the CCSM3 to isolate the effects of the feedbacks from the change of the wind-driven ocean circulation and air–sea heat flux in the global climate response to the forcing of doubling CO2. The partial coupling is achieved by implementing a so-called overriding technique, which helps quantitatively partition the total response in the fully coupled model to the feedback component in question and the response to external forcing in the absence of the former. By overriding the wind stress seen by the ocean and the wind speed through the bulk formula for evaporation, the experiments help to reveal that (i) the wind–evaporation–SST (WES) feedback is the main formation mechanism for the tropical SST pattern under the CO2 forcing, verifying the hypothesis proposed by Xie et al.; (ii) the weakened tropical Pacific wind is shown in this UOM model not to be the cause for the enhanced equatorial Pacific warming, as one might expect from the thermocline and Bjerknes feedbacks; (iii) WES is also the leading mechanism for shaping the tropical precipitation response in the ocean; and (iv) both the wind-driven ocean dynamical feedback and the WES feedback act to increase the persistence of the southern annular mode (SAM) and the increased time scale of the SAM due to these feedbacks manifests itself in the response of the jet shift to an identical CO2 forcing, in a manner conforming to the fluctuation–dissipation theorem.

Corresponding author address: Jian Lu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705-3106. E-mail: jianlu@cola.iges.org

Abstract

Two suites of partial coupling experiments are devised with the upper-ocean dynamics version (UOM) of the CCSM3 to isolate the effects of the feedbacks from the change of the wind-driven ocean circulation and air–sea heat flux in the global climate response to the forcing of doubling CO2. The partial coupling is achieved by implementing a so-called overriding technique, which helps quantitatively partition the total response in the fully coupled model to the feedback component in question and the response to external forcing in the absence of the former. By overriding the wind stress seen by the ocean and the wind speed through the bulk formula for evaporation, the experiments help to reveal that (i) the wind–evaporation–SST (WES) feedback is the main formation mechanism for the tropical SST pattern under the CO2 forcing, verifying the hypothesis proposed by Xie et al.; (ii) the weakened tropical Pacific wind is shown in this UOM model not to be the cause for the enhanced equatorial Pacific warming, as one might expect from the thermocline and Bjerknes feedbacks; (iii) WES is also the leading mechanism for shaping the tropical precipitation response in the ocean; and (iv) both the wind-driven ocean dynamical feedback and the WES feedback act to increase the persistence of the southern annular mode (SAM) and the increased time scale of the SAM due to these feedbacks manifests itself in the response of the jet shift to an identical CO2 forcing, in a manner conforming to the fluctuation–dissipation theorem.

Corresponding author address: Jian Lu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705-3106. E-mail: jianlu@cola.iges.org
Save
  • Barnes, E. A., D. L. Hartmann, D. M. Frierson, and J. Kidston, 2010: The effect of latitude on the persistence of eddy-driven jets. Geophys. Res. Lett., L11804, doi:10.1029/2010GL043199.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., and R. Seager, 1999: Climate and tropical oceans. J. Climate, 12, 33933401.

  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196.

  • Collins, M., and Coauthors, 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24, 89104.

  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. C. McWilliams, 2000: An upper-ocean model for short-term climate variability. J. Climate, 13, 33803411.

  • Danabasoglu, G., and P. R. Gent, 2008: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20708, doi:10.1029/2008GL035166.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. Eos, Trans. Amer. Geophys. Union, 91, 141142.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557.

    • Search Google Scholar
    • Export Citation
  • Gritsun, A., and G. Branstator, 2007: Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem. J. Atmos. Sci., 64, 25582575.

    • Search Google Scholar
    • Export Citation
  • Gritsun, A., G. Branstator, and A. Majda, 2008: Climate response of linear and quadratic functionals using the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 28242841.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6, 20492062.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Held, I. M., and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Held, I. M., M. Winton, K. Takahashi, T. L. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1975: Climate response and fluctuation dissipation. J. Atmos. Sci., 32, 20222026.

  • Leloup, J., and A. Clement, 2009: Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys. Res. Lett., 36, L14802, doi:10.1029/2009GL038609.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. J. Vavrus, F. He, N. Wen, and Y. Zhang, 2006: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007a: The tropopause height and the zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007b: The response of the extratropical hydrological cycle to global warming. J. Climate, 20, 34703484.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 17, 39844000.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2006: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 25972616.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • O’Gorman, P. A., and T. Schneider, 2009: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., and B. G. Liepert, 2007: Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett., 34, L22701, doi:10.1029/2007GL031243.

    • Search Google Scholar
    • Export Citation
  • Ring, M. J., and R. A. Plumb, 2008: The response of a simplified GCM to axisymmetric forcings: Application of the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 38803898.

    • Search Google Scholar
    • Export Citation
  • Riviere, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272.

    • Search Google Scholar
    • Export Citation
  • Sato, Y., S. Yukimoto, H. Tsujino, H. Ishizaki, and A. Noda, 2006: Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an Arctic Oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J. Meteor. Soc. Japan, 84, 295309.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and R. G. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10, 521534.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20, 36773692.

  • Vecchi, G. A., and B. J. Soden, 2007a: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • Vecchi, G. A., and B. J. Soden, 2007b: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 9, doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2001: Zonal wind vacillation and its interaction with the ocean: Implication for interannual variability and predictability. J. Geophys. Res., 106 (D20), 23 96523 975.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2003: Effects of a dynamic ocean on simulated climate sensitivity to greenhouse gases. Climate Dyn., 21, 197209, doi:10.1007/s00382-003-0326-4.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2009: Components of rainfall and temperature anomalies and change associated with modes of the Southern Hemisphere. Int. J. Climatol., 29, 809826, doi:10.1002/joc.1772.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63, 19541961.

  • Wu, Y., M. Ting, R. Seager, H.-P. Huang, and M. A. Cane, 2010: Changes in storm tracks and energy transport in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 5372, doi:10.1007/s00382-010-0776-4.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and G. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19, 25452566.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10/1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zhao, B., J. C. McWilliams, and P. W. Jones, 2011: The Los Alamos Upper Ocean Model. Los Alamos National Laboratory Tech. Rep. LA-UR-11-11622, 44 pp. [Available online at http://oceans11.lanl.gov/twiki/pub/Cosim/CosimPublications/UpperOceanModelZhao.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1464 755 202
PDF Downloads 671 199 15