A Role of the Yellow and East China Seas in the Development of Extratropical Cyclones in Winter

Atsuhiko Isobe Center for Marine Environmental Studies, Ehime University, Ehime, Japan

Search for other papers by Atsuhiko Isobe in
Current site
Google Scholar
PubMed
Close
and
Shin’ichiro Kako Center for Marine Environmental Studies, Ehime University, Ehime, Japan

Search for other papers by Shin’ichiro Kako in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To investigate whether the relatively warm Yellow and East China Seas play an active role in the deepening of extratropical cyclones over East Asia during winter, surface wind vectors downloaded from the Quick Scatterometer (QuikSCAT) website are used to compute the standard deviation of surface vorticity at ¼° resolution. In addition, a regional numerical atmospheric model is adopted to find atmospheric and/or oceanic conditions favorable for development of extratropical cyclones over the study area. These satellite-derived and modeled vorticity fields demonstrate that, on average, extratropical cyclone activity is moderate over the warm Yellow and East China Seas. This is because enhanced lower-level baroclinicity over these ocean areas is transferred as far as the shelf break of the East China Sea by strong northwesterly surface winds. Based on the numerical model results, the weak northwesterly surface wind condition is required for enhancing lower-level baroclinicity over the Yellow and East China Seas. This baroclinicity may contribute to enhancing cyclone development near Japan, with a simultaneous increase of lower-level baroclinicity over the Sea of Japan.

Corresponding author address: Prof. Atsuhiko Isobe, Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan. E-mail: aisobe@ehime-u.ac.jp

Abstract

To investigate whether the relatively warm Yellow and East China Seas play an active role in the deepening of extratropical cyclones over East Asia during winter, surface wind vectors downloaded from the Quick Scatterometer (QuikSCAT) website are used to compute the standard deviation of surface vorticity at ¼° resolution. In addition, a regional numerical atmospheric model is adopted to find atmospheric and/or oceanic conditions favorable for development of extratropical cyclones over the study area. These satellite-derived and modeled vorticity fields demonstrate that, on average, extratropical cyclone activity is moderate over the warm Yellow and East China Seas. This is because enhanced lower-level baroclinicity over these ocean areas is transferred as far as the shelf break of the East China Sea by strong northwesterly surface winds. Based on the numerical model results, the weak northwesterly surface wind condition is required for enhancing lower-level baroclinicity over the Yellow and East China Seas. This baroclinicity may contribute to enhancing cyclone development near Japan, with a simultaneous increase of lower-level baroclinicity over the Sea of Japan.

Corresponding author address: Prof. Atsuhiko Isobe, Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan. E-mail: aisobe@ehime-u.ac.jp
Save
  • Allen, J. T., A. B. Pezza, and M. T. Black, 2010: Explosive cyclogenesis: A global climatology comparing multiple reanalyses. J. Climate, 23, 64686484.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1991: Synoptic climatology of cyclogenesis over East Asia, 1958–1987. Mon. Wea. Rev., 119, 14071418.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1992: Climatology of explosive cyclones off the East Asian coast. Mon. Wea. Rev., 120, 30293035.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., D. Gill, K. Manning, W. Wang, and C. Bruyere, cited 2005: PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide (MM5 modeling system version 3). [Available online at http://www.mmm.ucar.edu/mm5/documents/tutorial-v3-notes.html.]

  • Fang, Y., Y. Zhang, J. Tang, and X. Ren, 2010: A regional air-sea coupled model and its application over East Asia in the summer of 2000. Adv. Atmos. Sci., 27, 583593.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon. Wea. Rev., 129, 12731295.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

  • Guan, L., and H. Kawamura, 2004: Merging satellite infrared and microwave SSTs: Methodology and evaluation of the new SST. J. Oceanogr., 60, 905912.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., O. Zolina, and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795809.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2002: Climatology and interannual variability in the intensity of synoptic-scale processes in the North Atlantic from the NCEP–NCAR reanalysis data. J. Climate, 15, 809828.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., J. R. Anderson, R. H. Grumn, and E. L. Gruner, 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117, 11411155.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., Y. Yoshikawa, and T. Watanabe, 1989: Composite analyses of wintertime wind stress vector fields with respect to SST anomalies in the western North Pacific and the ENSO events. Part I: SST composite. J. Meteor. Soc. Japan, 67, 385400.

    • Search Google Scholar
    • Export Citation
  • Hanson, H. P., and B. Long, 1985: Climatology of cyclogenesis over the East China Sea. Mon. Wea. Rev., 113, 697707.

  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061.

    • Search Google Scholar
    • Export Citation
  • Hsueh, Y., 1988: Recent current observations in the eastern Yellow Sea. J. Geophys. Res., 93 (C6), 68756884.

  • Isobe, A., 2008: Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves. J. Oceanogr., 64, 569584.

    • Search Google Scholar
    • Export Citation
  • Jan, S., D. D. Sheu, and H.-M. Kuo, 2006: Water mass and throughflow transport variability in the Taiwan Strait. J. Geophys. Res., 111, C12012, doi:10.1029/2006JC003656.

    • Search Google Scholar
    • Export Citation
  • Kako, S., and M. Kubota, 2006: Relationship between an El Nino event and the interannual variability of significant wave height in the North Pacific. Atmos.–Ocean, 44, 377395.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kawabe, M., 1982: Branching of the Tsushima Current in the Japan Sea. Part II. Numerical experiment. J. Oceanogr. Soc. Japan, 38, 183192.

    • Search Google Scholar
    • Export Citation
  • Li, T., and G. Zhou, 2010: Preliminary results of a regional air-sea coupled model over East Asia. Chin. Sci. Bull., 55, 22952305.

  • Lie, H.-J., C.-H. Cho, J.-H. Lee, and S. Lee, 2001: Does the Yellow Sea warm current really exist as a persistent mean flow? J. Geophys. Res., 106 (C10), 22 19922 210.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 16291642.

  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15, 18551874.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and S. I. Kamikawa, 1990: Dynamics and boundary layer processes in two Asian cyclones. Mon. Wea. Rev., 118, 755771.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and Coauthors, 1999: A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: The bridge between theory and observations. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grφnås, Eds., Amer. Meteor. Soc., 139–186.

  • Shiota, M., R. Kawamura, H. Hatsushika, and S. Iizuka, 2011: Influence of the East Asian winter monsoon variability on the surface cyclogenesis over the East China Sea in late winter. SOLA, 7, 129132.

    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., and T. Asai, 2004: The multi-scale structure and development mechanism of mesoscale cyclones over the Sea of Japan in winter. J. Meteor. Soc. Japan, 82, 597621.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., and Y. C. Hsin, 2005: Volume transport through the Taiwan Strait: A numerical study. Terr. Atmos. Oceanic Sci., 16, 377391.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., S.-Y. Chao, and C. Hsu, 2007: Transient, seasonal and interannual variability of the Taiwan Strait Current. J. Oceanogr., 63, 821833.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., J. Hafner, Y. Tanimoto, W. T. Liu, H. Tokinaga, and H. Xu, 2002: Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophys. Res. Lett., 29, 2228, doi:10.1029/2002GL015884.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., and N. Hirose, 2007: Impact of SST reanalyzed using OGCM on weather simulation: A case of a developing cyclone in the Japan Sea area. Geophys. Res. Lett., 34, L05808, doi:10.1029/2006GL028386.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., and M. Jean, 1989: Synoptic aspects and physical processes in the rapidly intensifying cyclone of 6-8 March 1986. Atmos.–Ocean, 27, 5986.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., 1982a: Numerical experiment on the circulation in the Japan Sea. Part I. Formation of the East Korean warm current. J. Oceanogr. Soc. Japan, 38, 4351.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., 1982b: Numerical experiment on the circulation in the Japan Sea. Part III. Mechanism of the nearshore branch of the Tsushima Current. J. Oceanogr. Soc. Japan, 38, 125130.

    • Search Google Scholar
    • Export Citation
  • Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 132, 11211142.

    • Search Google Scholar
    • Export Citation
  • Yoshiike, S., and R. Kawamura, 2009: Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects. J. Geophys. Res., 114, D13110, doi:10.1029/2009JD011820.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., and S. K. Gulev, 2003: Synoptic variability of ocean–atmosphere turbulent fluxes associated with atmosphere cyclones. J. Climate, 15, 27172734.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 816 565 34
PDF Downloads 190 44 4