Can a Regional Climate Model Improve the Ability to Forecast the North American Monsoon?

Christopher L. Castro Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Christopher L. Castro in
Current site
Google Scholar
PubMed
Close
,
Hsin-I Chang Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Hsin-I Chang in
Current site
Google Scholar
PubMed
Close
,
Francina Dominguez Department of Atmospheric Sciences, and Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

Search for other papers by Francina Dominguez in
Current site
Google Scholar
PubMed
Close
,
Carlos Carrillo Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Carlos Carrillo in
Current site
Google Scholar
PubMed
Close
,
Jae-Kyung Schemm Climate Prediction Center, NCEP/NWS, Camp Springs, Maryland

Search for other papers by Jae-Kyung Schemm in
Current site
Google Scholar
PubMed
Close
, and
Hann-Ming Henry Juang Environmental Modeling Center, NCEP/NWS, Camp Springs, Maryland

Search for other papers by Hann-Ming Henry Juang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global climate models are challenged to represent the North American monsoon, in terms of its climatology and interannual variability. To investigate whether a regional atmospheric model can improve warm season forecasts in North America, a retrospective Climate Forecast System (CFS) model reforecast (1982–2000) and the corresponding NCEP–NCAR reanalysis are dynamically downscaled with the Weather Research and Forecasting model (WRF), with similar parameterization options as used for high-resolution numerical weather prediction and a new spectral nudging capability. The regional model improves the climatological representation of monsoon precipitation because of its more realistic representation of the diurnal cycle of convection. However, it is challenged to capture organized, propagating convection at a distance from terrain, regardless of the boundary forcing data used. Dynamical downscaling of CFS generally yields modest improvement in surface temperature and precipitation anomaly correlations in those regions where it is already positive in the global model. For the North American monsoon region, WRF adds value to the seasonally forecast temperature only in early summer and does not add value to the seasonally forecast precipitation. CFS has a greater ability to represent the large-scale atmospheric circulation in early summer because of the influence of Pacific SST forcing. The temperature and precipitation anomaly correlations in both the global and regional model are thus relatively higher in early summer than late summer. As the dominant modes of early warm season precipitation are better represented in the regional model, given reasonable large-scale atmospheric forcing, dynamical downscaling will add value to warm season seasonal forecasts. CFS performance appears to be inconsistent in this regard.

Corresponding author address: Dr. Christopher L. Castro, Department of Atmospheric Sciences, The University of Arizona, Physics and Atmospheric Sciences Bldg., Rm. 520, 1118 East Fourth Street, Tucson, AZ 85721-0081. E-mail: castro@atmo.arizona.edu

Abstract

Global climate models are challenged to represent the North American monsoon, in terms of its climatology and interannual variability. To investigate whether a regional atmospheric model can improve warm season forecasts in North America, a retrospective Climate Forecast System (CFS) model reforecast (1982–2000) and the corresponding NCEP–NCAR reanalysis are dynamically downscaled with the Weather Research and Forecasting model (WRF), with similar parameterization options as used for high-resolution numerical weather prediction and a new spectral nudging capability. The regional model improves the climatological representation of monsoon precipitation because of its more realistic representation of the diurnal cycle of convection. However, it is challenged to capture organized, propagating convection at a distance from terrain, regardless of the boundary forcing data used. Dynamical downscaling of CFS generally yields modest improvement in surface temperature and precipitation anomaly correlations in those regions where it is already positive in the global model. For the North American monsoon region, WRF adds value to the seasonally forecast temperature only in early summer and does not add value to the seasonally forecast precipitation. CFS has a greater ability to represent the large-scale atmospheric circulation in early summer because of the influence of Pacific SST forcing. The temperature and precipitation anomaly correlations in both the global and regional model are thus relatively higher in early summer than late summer. As the dominant modes of early warm season precipitation are better represented in the regional model, given reasonable large-scale atmospheric forcing, dynamical downscaling will add value to warm season seasonal forecasts. CFS performance appears to be inconsistent in this regard.

Corresponding author address: Dr. Christopher L. Castro, Department of Atmospheric Sciences, The University of Arizona, Physics and Atmospheric Sciences Bldg., Rm. 520, 1118 East Fourth Street, Tucson, AZ 85721-0081. E-mail: castro@atmo.arizona.edu
Save
  • Arritt, R. W., 2011: Ensemble downscaling of seasonal forecasts for hydrological applications. Recorded Presentation, 23rd Conf. on Climate Variability and Change and 25th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., J9.5. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper184836.html.]

  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American Monsoon System. J. Climate, 11, 22382257.

  • Bieda, S. W. III, C. L. Castro, S. L. Mullen, A. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., T. B. McKee, and R. A. Pielke Sr., 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14, 44494473.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and G. Leoncini, 2005: Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J. Geophys. Res., 110, D05108, doi:10.1029/2004JD004721.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007a: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38443865.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., J. O. Adegoke, S. D. Schubert, and P. J. Pegion, 2007b: Investigation of the summer climate of the contiguous United States and Mexico Using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., A. B. Beltrán-Przekurat, and R. A. Pielke Sr., 2009: Spatiotemporal variability of precipitation, modeled soil moisture, and vegetation greenness in North America within the recent observational record. J. Hydrometeor., 10, 13551378.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., M. D. Dettinger, H. F. Diaz, and N. E. Graham, 1998: Decadal variability of precipitation over western North America. J. Climate, 11, 31483166.

    • Search Google Scholar
    • Export Citation
  • Cerezo-Mota, R., M. Allen, and R. Jones, 2011: Mechanisms controlling precipitation in the northern portion of the North American monsoon. J. Climate, 24, 27712783.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., and V. Mishra, 2011: Dynamic downscaling of the North American monsoon with the NCEP–Scripps regional spectral model from the NCEP CFS global model. J. Climate, 24, 653673.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 85 pp.

  • Collier, J. C., and G. J. Zhang, 2007: Effects of increased horizontal resolution on simulation of the North American monsoon in the NCAR CAM3: An evaluation based on surface, satellite, and reanalysis data. J. Climate, 20, 18431861.

    • Search Google Scholar
    • Export Citation
  • Comrie, A. C., and E. C. Glenn, 1998: Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Climate Res., 10, 201215.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418.

  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505.

  • Dominguez, F., J. Cañon, and J. Valdes, 2010: IPCC-AR4 climate simulations for the southwestern U.S.: The importance of future ENSO projections. Climatic Change, 99, 499514, doi:10.1007/s10584-009-9672-5.

    • Search Google Scholar
    • Export Citation
  • Douglas, A. V., and P. J. Englehart, 2007: A climatological perspective of transient synoptic features during NAME 2004. J. Climate, 20, 19471954.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advancements in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gao, X., J. Li, and S. Sorooshian, 2007: Modeling intraseasonal features of 2004 North American monsoon precipitation. J. Climate, 20, 18821896.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Grantz, K., B. Rajagopalan, M. Clark, and E. Zagona, 2007: Seasonal shifts in the North American monsoon. J. Climate, 20, 19231935.

  • Gutzler, D. S., and Coauthors, 2005: The North American Monsoon Model Assessment Project: Integrating numerical modeling into a field-based process study. Bull. Amer. Meteor. Soc., 86, 14231429.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174.

  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., and D. Gochis, 2007: Synthesis of results from the North American Monsoon Experiment (NAME) process study. J. Climate, 20, 16011607.

    • Search Google Scholar
    • Export Citation
  • Higgins, W., and Coauthors, 2006: The NAME 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87, 7994.

  • Hong, S.-Y., and H. L. Pan, 2000: Impact of soil moisture anomalies on seasonal summertime circulation over North America in a regional climate model. J. Geophys. Res., 105 (D24), 29 62529 634.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 26212639.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., D. W. McKenney, K. Lawrence, J. H. Pedlar, R. F. Hopkinson, E. Milewska, and P. Papadopol, 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443.

  • Janjic, Z. I., 1996: The surface layer in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., and H. Kanamaru, 2007: Fifty-seven-year California reanalysis downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20, 55535571.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1985: Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Mon. Wea. Rev., 113, 19701996.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 18621881.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability global surface air temperature. Theor. Appl. Climatol., 41, 1121.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-L., J. Zhu, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2008: Do CGCMs simulate the North American monsoon precipitation seasonal interannual variability? J. Climate, 21, 44244448.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Rarley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and R. A. Pielke Sr., 2000: A climate version of the Regional Atmospheric Modeling System. Theor. Appl. Climatol., 66, 2947.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and M. M. Timonfeyeva, 2008: The first decade of long-lead U.S. seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 843854.

    • Search Google Scholar
    • Export Citation
  • Luong, T., C. L. Castro, and W. Cassell, 2011: Improvement in the representation of warm season convective precipitation in complex terrain using a modified Kain–Fritsch convective parameterization scheme. Proc. Sixth Southwest Hydrometeorology Symp., Tempe, AZ, NOAA. [Abstract available online at http://www.wrh.noaa.gov/psr/pns/symposium/abstracts.pdf.]

  • Maddox, R. A., D. M. McCollum, and K. W. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778.

    • Search Google Scholar
    • Export Citation
  • Maxino, C. C., B. J. McAvaney, A. J. Pitman, and S. E. Perkins, 2008: Ranking the AR4 climate models over the Murray–Darling basin using simulated maximum temperature, minimum temperature and precipitation. Int. J. Climatol., 28, 10971112.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. D. Dettinger, 1999: Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 13991410.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 12271246.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124, 17861802.

    • Search Google Scholar
    • Export Citation
  • Piechota, T. C., and J. A. Dracup, 1996: Drought and regional hydrologic variations in the United States: Associations with the El Niño–Southern Oscillation. Water Resour. Res., 32, 13591373.

    • Search Google Scholar
    • Export Citation
  • Piechota, T. C., J. A. Dracup, and R. G. Fovell, 1997: Western U.S. streamflow and atmospheric circulation patterns during El Niño–Southern Oscillation. J. Hydrol., 201, 249271.

    • Search Google Scholar
    • Export Citation
  • Ray, A. J., G. M. Garfin, M. Wilder, M. Vásquez-León, M. Lenart, and A. C. Comrie, 2006: Applications of monsoon research: Opportunities to inform decision making and reduce regional vulnerability. J. Climate, 20, 16081627.

    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., and R. W. Koch, 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27, 23812399.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335.

  • Rockel, B., C. L. Castro, R. A. Pielke Sr., H. von Storch, and G. Leoncini, 2008: Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res., 113, D21107, doi:10.1029/2007JD009461.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño–Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517.

  • Schemm, J.-K., R. W. Higgins, L. Long, and W. Shi, 2009: The North American monsoon forecast forum at CPC and assessment of the NCEP CFS GCM. Proc. Fifth Symp. on Southwest Hydrometeorology, Albuquerque, NM, NOAA/NWS. [Available online at http://www.srh.noaa.gov/media/abq/sswhm/schemm_etal_sw_hydromet_09.pdf.]

  • Schneider, J. M., and J. D. Garbrecht, 2005: Recent utility of NOAA/CPC seasonal precipitation climate forecasts. Climate Variations, Climate Change, and Water Resources Engineering, J. D. Garbrecht and T. C. Piechota, Eds., American Society of Civil Engineers, 51–64.

  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference, Association for Computing Machinery, 517–524.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Tribbia, J. J., 1991: The rudimentary theory of atmospheric teleconnections associated with ENSO. Teleconnections Linking Worldwide Climate Anomalies, M. H. Glantz, R. W. Katz, and N. Nicholls, Eds., Cambridge University Press, 285–308.

  • Truong, N. M., T. T. Tien, R. A. Pielke Sr., C. L. Castro, and G. Leoncini, 2009: A modified Kain–Fritsch scheme and its application for simulation of an extreme precipitation event in Vietnam. Mon. Wea. Rev., 137, 766789.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., C. M. Rowe, and W. D. Philpot, 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Amer. Cartogr., 12, 516.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Y. Jiang, D. Zheng, R. W. Higgins, Q. Zhang, V. E. Kousky, and M. Wen, 2009: Variations of U.S. regional precipitation and simulations by the NCEP CFS: Focus on the southwest. J. Climate, 22, 32113231.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1819 1152 84
PDF Downloads 604 112 16