On the Relationship between Decadal Buoyancy Anomalies and Variability of the Atlantic Meridional Overturning Circulation

Martha W. Buckley Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Martha W. Buckley in
Current site
Google Scholar
PubMed
Close
,
David Ferreira Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by David Ferreira in
Current site
Google Scholar
PubMed
Close
,
Jean-Michel Campin Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Jean-Michel Campin in
Current site
Google Scholar
PubMed
Close
,
John Marshall Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
, and
Ross Tulloch Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Ross Tulloch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Owing to the role of the Atlantic meridional overturning circulation (AMOC) in ocean heat transport, AMOC variability is thought to play a role in climate variability on a wide range of time scales. This paper focuses on the potential role of the AMOC in climate variability on decadal time scales. Coupled and ocean-only general circulation models run in idealized geometries are utilized to study the relationships between decadal AMOC and buoyancy variability and determine whether the AMOC plays an active role in setting sea surface temperature on decadal time scales. Decadal AMOC variability is related to changes in the buoyancy field along the western boundary according to the thermal wind relation. Buoyancy anomalies originate in the upper ocean of the subpolar gyre and travel westward as baroclinic Rossby waves. When the buoyancy anomalies strike the western boundary, they are advected southward by the deep western boundary current, leading to latitudinally coherent AMOC variability. The AMOC is observed to respond passively to decadal buoyancy anomalies: although variability of the AMOC leads to meridional ocean heat transport anomalies, these transports are not responsible for creating the buoyancy anomalies in the subpolar gyre that drive AMOC variability.

Current affiliation: Atmospheric and Environmental Research, Lexington, Massachusetts.

Corresponding author address: Martha Buckley, 131 Hartwell Avenue #4, Lexington, MA 02421. E-mail: marthab@alum.mit.edu

Abstract

Owing to the role of the Atlantic meridional overturning circulation (AMOC) in ocean heat transport, AMOC variability is thought to play a role in climate variability on a wide range of time scales. This paper focuses on the potential role of the AMOC in climate variability on decadal time scales. Coupled and ocean-only general circulation models run in idealized geometries are utilized to study the relationships between decadal AMOC and buoyancy variability and determine whether the AMOC plays an active role in setting sea surface temperature on decadal time scales. Decadal AMOC variability is related to changes in the buoyancy field along the western boundary according to the thermal wind relation. Buoyancy anomalies originate in the upper ocean of the subpolar gyre and travel westward as baroclinic Rossby waves. When the buoyancy anomalies strike the western boundary, they are advected southward by the deep western boundary current, leading to latitudinally coherent AMOC variability. The AMOC is observed to respond passively to decadal buoyancy anomalies: although variability of the AMOC leads to meridional ocean heat transport anomalies, these transports are not responsible for creating the buoyancy anomalies in the subpolar gyre that drive AMOC variability.

Current affiliation: Atmospheric and Environmental Research, Lexington, Massachusetts.

Corresponding author address: Martha Buckley, 131 Hartwell Avenue #4, Lexington, MA 02421. E-mail: marthab@alum.mit.edu
Save
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7 (3–4), 269–284, doi:10.1016/j.ocemod.2003.09.003.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., J.-M. Campin, C. Hill, and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 2845–2863.

    • Search Google Scholar
    • Export Citation
  • Baehr, J., J. Hirschi, J.-O. Beismann, and J. Marotzke, 2004: Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J. Mar. Res., 62, 283–312.

    • Search Google Scholar
    • Export Citation
  • Bingham, R., C. Hughes, V. Roussenov, and R. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34, L23606, doi:10.1029/2007GL031731.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, L10603, doi:10.1029/2005GL022474.

    • Search Google Scholar
    • Export Citation
  • Cabanes, C., T. Lee, and L. Fu, 2008: Mechanisms of interannual variations of the meridional overturning circulation of the North Atlantic Ocean. J. Phys. Oceanogr., 38, 467–480.

    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., J. Marshall, and D. Ferreira, 2008: Sea ice–ocean coupling using a rescaled vertical coordinate z*. Ocean Modell., 24, 1–14, doi:10.1016/j.ocemod.2008.05.005.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., 1992a: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., 1992b: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354–369.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and F. Primeau, 2001: Dissipative selection of low-frequency modes in a reduced-gravity basin. J. Phys. Oceanogr., 31, 127–137.

    • Search Google Scholar
    • Export Citation
  • Codiga, D., and P. Cornillon, 2003: Effects of geographical variation in vertical mode structure on the sea surface topography, energy, and wind forcing of baroclinic Rossby waves. J. Phys. Oceanogr., 33, 1219–1230.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdiére, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893–910.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935–937.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., M. S. McCartney, and T. M. Joyce, 1998: Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature, 391, 575–577.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 2008: On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model, version 3. J. Climate, 21, 5524–5544.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and M. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., S. Manabe, and R. Stouffer, 1993: Interdecadal variations in the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 1993–2011.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 1743–1753.

    • Search Google Scholar
    • Export Citation
  • Deshayes, J., and C. Frankignoul, 2005: Spectral characteristics of the response of the meridional overturning circulation to deep-water formation. J. Phys. Oceanogr., 35, 1813–1825.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. Sutton, 2001: The dominant mechanisms of variability in Atlantic Ocean heat transport in a coupled ocean–atmospheric GCM. Geophys. Res. Lett., 28, 2445–2448.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. Sutton, 2003: Variability of Atlantic Ocean heat transport and its effects on the atmosphere. Ann. Geophys., 46, 87–97.

    • Search Google Scholar
    • Export Citation
  • Dong, S., and K. A. Kelly, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., 34, 1214–1231.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. L. Hautala, and K. A. Kelly, 2007: Interannual variations in upper-ocean heat content and heat transport convergence in the western North Atlantic. J. Phys. Oceanogr., 37, 2682–2697.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38 (3–4), 171–186, doi:10.1016/j.ocemod.2011.02.013.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep-water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 1456–1476.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans, 2, 341–381, doi:10.1016/0377-0265(78)90002-7.

    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., and H. A. Dijkstra, 2009: Coherent multidecadal variability in North Atlantic sea level. Geophys. Res. Lett., 36, L15604, doi:10.1029/2009GL039455.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 1533–1546.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 2310–2324.

    • Search Google Scholar
    • Export Citation
  • Fu, L., and B. Qui, 2002: Low-frequency variability of the North Pacific Ocean the roles of boundary- and wind-driven baroclinic rossby waves. J. Geophys. Res., 107 (C12), 3220, doi:10.1029/2001JC001131.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696–705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grist, J., and Coauthors, 2010: The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn., 60, 771–790, doi:10.1007/s10236-010-0292-4.

    • Search Google Scholar
    • Export Citation
  • Hasselman, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 289–305.

  • Hawkins, E., and R. Sutton, 2009: Decadal predictability of the Atlantic Ocean in a coupled GCM: Forecast skill and optimal perturbations using linear inverse modeling. J. Climate, 22, 3960–3978.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., and J. Marotzke, 2007: Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J. Phys. Oceanogr., 37, 743–763, doi:10.1175/JPO3019.1.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., P. Killworth, and J. Blundel, 2007: Subannual, seasonal, and interannual variability of the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 1246–1265.

    • Search Google Scholar
    • Export Citation
  • Hristova, H. G., J. Pedlosky, and M. A. Spall, 2008: Radiating instability of a meridional boundary current. J. Phys. Oceanogr., 38, 2294–2307.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2010: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 2429–2449.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002a: A theory for the durface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 1121–1132.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002b: Localization of abrupt change in the North Atlantic thermohaline circulation. Geophys. Res. Lett., 29, 1083, doi:10.1029/2001GL014140.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., U. Send, W. Zenk, A. Chave, and M. Rhein, 2006: Monitoring the integrated deep meridional flow in the tropical North Atlantic: Long-term performance of a geostrophic array. Deep-Sea Res. I, 53, 528–546.

    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17, 2294–2317.

  • Klinger, B., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101 (C8), 18 175–18 182.

    • Search Google Scholar
    • Export Citation
  • Knight, J., R. Allan, C. Follard, and M. Vellinga, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperatures and associated atmospheric conditions. J. Climate, 9, 1208–1220.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. Alexander, N. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 3249–3281.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1998: Seasonal cycles of meridional overturning and heat transport of the Indian Ocean. J. Phys. Oceanogr., 28, 923–943.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2010: Deconstructing the conveyor belt. Science, 328, 1507–1511, doi:10.1126/science.1189250.

  • Mann, M., J. Park, and R. Bradley, 1995: Global interdecadal and century-scale oscillations during the past five centuries. Nature, 378, 266–270.

    • Search Google Scholar
    • Export Citation
  • Mann, M., R. Bradley, and M. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–787.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and B. A. Klinger, 2000: The dynamics of equatorially asymmetric thermohaline circulations. J. Phys. Oceanogr., 30, 955–970.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C2), 5753–5766.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parameterizations. I: Model climatology and variability in multidecadal experiments. Climate Dyn., 20, 175–191.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., and C. Frankignoul, 2009: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Climate Dyn., 33, 45–62.

    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., T. Joyce, and J. Toole, 2011: Recent changes in the Labrador Sea Water within the deep western boundary current southeast of Cape Cod. Deep-Sea Res. I, 58, 1019–1030.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar ocean: Observations and causes. J. Phys. Oceanogr., 32, 353–375.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and P. Müller, 1997: Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans. J. Phys. Oceanogr., 27, 2405–2417.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 36, 1751–1762.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158.

  • Ripa, P., 1978: Normal Rossby basin modes of a closed basin with topography. J. Geophys. Res., 83 (C4), 1947–1957.

  • Schneider, N., and A. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14, 3997–4002.

  • Seager, R., Y. Kushnir, P. Chang, N. Naik, J. Miller, and W. Hazeleger, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13, 2845–2862.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., and R. Sutton, 2006: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. J. Climate, 19, 1167–1181, doi:10.1175/JCLI3652.1.

    • Search Google Scholar
    • Export Citation
  • Sime, L., D. Stevens, K. Heywood, and K. Oliver, 2006: A decomposition of the Atlantic meridional overturning. J. Phys. Oceanogr., 36, 2253–2270.

    • Search Google Scholar
    • Export Citation
  • Sirven, J., C. Frankignoul, D. DeCoetlogon, and V. Tailandier, 2002: Spectrum of wind-driven baroclinic fluctuations of the ocean in the midlatitudes. J. Phys. Oceanogr., 32, 2405–2417.

    • Search Google Scholar
    • Export Citation
  • Spence, P., O. Saenko, W. Sijp, and M. England, 2012: The role of bottom pressure torques in the interior pathways of North Atlantic Deep Water. J. Phys. Oceanogr., 42, 110–125.

    • Search Google Scholar
    • Export Citation
  • Spydell, M., and P. Cessi, 2003: Baroclinic modes in a two-layer basin. J. Phys. Oceanogr., 33, 610–622.

  • Sturges, W., and B. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequency. J. Phys. Oceanogr., 25, 1706–1715.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., B. Hong, and A. Clark, 1998: Decadal wind forcing of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 28, 659–698.

    • Search Google Scholar
    • Export Citation
  • Talley, L., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530–560.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32, 138–160.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., J. Gerrits, and H. A. Dijkstra, 2004: Identification of the mechanism of interdecadal variability in the North Atlantic Ocean. J. Phys. Oceanogr., 34, 2792–2807.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 1469–1481.

    • Search Google Scholar
    • Export Citation
  • Toole, J., R. Curry, T. Joyce, M. McCartney, and B. Peña-Molino, 2011: Transport of the North Atlantic deep western boundary current about 39°N, 70°W: 2004–2008. Deep-Sea Res. II, 58, 1768–1780.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433–3443.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and J. Marshall, 2012: Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J. Climate, 25, 4067–4080.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, and K. S. Smith, 2009: Interpretation of the propagation of surface altimetric observations in terms of planetary waves and gesotrophic turbulence. J. Geophys. Res., 114, C02005, doi:10.1029/2008JC005055.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Zanna, and C. Penland, 2008: Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J. Phys. Oceanogr., 38, 588–604.

    • Search Google Scholar
    • Export Citation
  • Walker, A., and J. Pedlosky, 2002: Instability of meridional baroclinic currents. J. Phys. Oceanogr., 32, 1075–1093.

  • Wang, J., 2011: Instabilities of an eastern boundary current with and without large-scale flow influence. Ph.D. thesis, Massachusetts Institute of Technology, 227 pp.

  • White, W., 1977: Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J. Phys. Oceanogr., 7, 50–61.

  • Winton, M., 1997: The damping effect of bottom topography on internal decadal-scale oscillations of the thermohaline circulation. J. Phys. Oceanogr., 27, 203–208.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 1770–1794.

  • Zanna, L., P. Heimbach, A. Moore, and E. Tziperman, 2011a: Upper ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Quart. J. Roy. Meteor. Soc., 138, 500–513, doi:10.1002/qj.937.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., P. Heimbach, A. Moore, and E. Tziperman, 2011b: Optimal excitation of interannual atlantic meridional overturning circulation variability. J. Climate, 24, 413–427.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, doi:10.1029/2008GL035463.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic Meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, doi:10.1029/2010GL044474.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. Delworth, and I. Held, 2007: Can the Atlantic Ocean drive the observed mulidecadal variability in the Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1843 1248 71
PDF Downloads 482 114 11