Surface Energy Balance Framework for Arctic Amplification of Climate Change

Glen Lesins Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Glen Lesins in
Current site
Google Scholar
PubMed
Close
,
Thomas J. Duck Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Thomas J. Duck in
Current site
Google Scholar
PubMed
Close
, and
James R. Drummond Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by James R. Drummond in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using 22 Canadian radiosonde stations from 1971 to 2010, the annually averaged surface air temperature trend amplification ranged from 1.4 to 5.2 relative to the global average warming of 0.17°C decade−1. The amplification factors exhibit a strong latitudinal dependence varying from 2.6 to 5.2 as the latitude increases from 50° to 80°N. The warming trend has a strong seasonal dependence with the greatest warming taking place from September to April. The monthly variations in the warming trend are shown to be related to the surface-based temperature inversion strength and the mean monthly surface air temperatures.

The surface energy balance (SEB) equation is used to relate the response of the surface temperature to changes in the surface energy fluxes. Based on the SEB analysis, there are four contributing factors to Arctic amplification: 1) a larger change in net downward radiation at the Arctic surface compared to the global average; 2) a larger snow and soil conductive heat flux change than the global average; 3) weaker sensible and latent heat flux responses that result in a larger surface temperature response in the Arctic; and 4) a colder skin temperature compared to the global average, which forces a larger surface warming to achieve the same increase in upward longwave radiation. The observed relationships between the Canadian station warming trends and both the surface-based inversion strength and the surface air temperature are shown to be consistent with the SEB analysis. Measurements of conductive flux were not available at these stations.

Corresponding author address: Glen Lesins, Department of Physics and Atmospheric Science, Dalhousie University, Halifax NS B3H 3J5, Canada. E-mail: glen.lesins@dal.ca

Abstract

Using 22 Canadian radiosonde stations from 1971 to 2010, the annually averaged surface air temperature trend amplification ranged from 1.4 to 5.2 relative to the global average warming of 0.17°C decade−1. The amplification factors exhibit a strong latitudinal dependence varying from 2.6 to 5.2 as the latitude increases from 50° to 80°N. The warming trend has a strong seasonal dependence with the greatest warming taking place from September to April. The monthly variations in the warming trend are shown to be related to the surface-based temperature inversion strength and the mean monthly surface air temperatures.

The surface energy balance (SEB) equation is used to relate the response of the surface temperature to changes in the surface energy fluxes. Based on the SEB analysis, there are four contributing factors to Arctic amplification: 1) a larger change in net downward radiation at the Arctic surface compared to the global average; 2) a larger snow and soil conductive heat flux change than the global average; 3) weaker sensible and latent heat flux responses that result in a larger surface temperature response in the Arctic; and 4) a colder skin temperature compared to the global average, which forces a larger surface warming to achieve the same increase in upward longwave radiation. The observed relationships between the Canadian station warming trends and both the surface-based inversion strength and the surface air temperature are shown to be consistent with the SEB analysis. Measurements of conductive flux were not available at these stations.

Corresponding author address: Glen Lesins, Department of Physics and Atmospheric Science, Dalhousie University, Halifax NS B3H 3J5, Canada. E-mail: glen.lesins@dal.ca
Save
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, doi:10.1007/s00382-005-0018-3.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., E. C. van der Linden, and W. Hazeleger, 2012: Boundary layer stability and Arctic climate change: A feedback study using EC-Earth. Climate Dyn., 39, 26592673, doi:10.1007/s00382-011-1272-1.

    • Search Google Scholar
    • Export Citation
  • Bourne, S. M., U. S. Bhatt, J. Zhang, and R. Thoman, 2010: Surface-based temperature inversions in Alaska from a climate perspective. Atmos. Res., 95, 353366.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., and F. T. Keimig, 1992: Climatology of surface-based inversions in the North American Arctic. J. Geophys. Res., 97 (D14), 15 69915 712.

    • Search Google Scholar
    • Export Citation
  • Busch, N., U. Ebel, H. Kraus, and E. Schaller, 1982: The structure of the subpolar inversion-capped ABL. Meteor. Atmos. Phys., 31, 118.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., III, and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657660.

  • Comiso, J. C., 2003: Warming trends in the Arctic from clear-sky satellite observations. J. Climate, 16, 34983510.

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Curry, J., 1983: On the formation of continental polar air. J. Atmos. Sci., 40, 22782292.

  • Devasthale, A., U. Willen, K.-G. Karlsson, and C. G. Jones, 2010: Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmos. Chem. Phys., 10, 55655572.

    • Search Google Scholar
    • Export Citation
  • Durre, I., and X. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteor. Soc., 89, 12571262.

  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368.

  • Durre, I., R. S. Vose, and D. B. Wuertz, 2008: Robust automated quality assurance of radiosonde temperatures. J. Appl. Meteor. Climatol., 47, 20812095.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Garrett, T. J., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787789.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., L. F. Radke, and P. V. Hobbs, 2002: Aerosol effects on cloud emissivity and surface longwave heating in the Arctic. J. Atmos. Sci., 59, 769778.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, doi:10.1007/s00382-009-0535-6.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Higgins, M. E., and J. J. Cassano, 2009: Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation and temperature. J. Geophys. Res., 114, D16107, doi:10.1029/2009JD011884.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232.

  • Hudson, S. R., and R. E. Brandt, 2005: A look at the surface-based temperature inversion on the Antarctic Plateau. J. Climate, 18, 16731696.

    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., 1990: Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol., 10, 537548.

    • Search Google Scholar
    • Export Citation
  • Lesins, G., T. J. Duck, and J. R. Drummond, 2010: Climate trends at Eureka in the Canadian High Arctic. Atmos.–Ocean, 48, 5980.

  • Liu, Y., J. R. Key, and X. Wang, 2008: The influence of changes in cloud cover on recent surface temperature trends in the Arctic. J. Climate, 21, 705715.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, doi:10.1029/2009GL040133.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dyn., 34, 669687.

    • Search Google Scholar
    • Export Citation
  • Mahesh, A., V. P. Walden, and S. G. Warren, 1997: Radiosonde temperature measurements in strong inversions: Correction for thermal lag based on an experiment at the South Pole. J. Atmos. Oceanic Technol., 14, 4553.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85 (C10), 55295554.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2011: An Arctic CCN-limited cloud-aerosol regime. Atmos. Chem. Phys., 11, 165173.

  • Medeiros, B., C. Deser, R. A. Tomas, and J. E. Kay, 2011: Arctic inversion strength in climate models. J. Climate, 24, 47334740.

  • Overland, J. E., and P. S. Guest, 1991: The snow and air temperature budget over sea ice during winter. J. Geophys. Res., 96 (C3), 46514662.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., J. Boe, A. Hall, and E. J. Fetzer, 2011: Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Climate Dyn., 36, 945955.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., C. W. Fairall, E. L Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pike-Thackray, C., 2011: Reconstruction of High Arctic winter surface energy fluxes. M.S. thesis, Dept. of Physics and Atmospheric Science, Dalhousie University, 95 pp.

  • Polyakov, I. V., and Coauthors, 2002: Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett., 29, 1878, doi:10.1029/2001GL011111.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010a: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, doi:10.1029/2010GL044136.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010b: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2005: The Arctic Climate System. Cambridge University Press, 385 pp.

  • Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264.

  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. E. Box, R. G. Barry, and J. E. Walsh, 1993: Characteristics of Arctic synoptic activity, 1952-1989. Meteor. Atmos. Phys., 51, 147164.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2, 294300.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32, L23822, doi:10.1029/2005GL024379.

    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., J. C. Fyfe, and G. M. Flato, 2010: The role of poleward energy transport in Arctic temperature evolution. Geophys. Res. Lett., 37, L14803, doi:10.1029/2010GL043934.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Seidel, J.-C. Golaz, C. Deser, and R. A. Tomas, 2011: Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Climate, 24, 51675186.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1514 671 65
PDF Downloads 936 214 19