• Abdella, K., and N. A. McFarlane, 1997: A new second-order turbulence closure scheme for the planetary boundary layer. J. Atmos. Sci., 54, 18501867.

    • Search Google Scholar
    • Export Citation
  • Adamec, D., M. M. Rienecker, and J. M. Vukovich, 1993: The time-varying characteristics of the meridional Ekman heat transport for the World Ocean. J. Phys. Oceanogr., 23, 27042716.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., K. Bryan, A. E. Gill, and R. C. Pacanowski, 1979: The transient response of the North Atlantic: Some model studies. J. Geophys. Res., 84 (C8), 47954815.

    • Search Google Scholar
    • Export Citation
  • Antonov, J., S. Levitus, T. P. Boyer, M. Conkright, T. O. Brien, and C. Stephens, 1998: Temperature of the Atlantic Ocean. Vol. 1, World Ocean Atlas 1998, NOAA Atlas NESDIS 27, 166 pp.

  • Boning, C. W., and P. Herrmann, 1994: Annual cycle of poleward heat transport in the ocean: Results from high-resolution modeling of the North and equatorial Atlantic. J. Phys. Oceanogr., 24, 91107.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1989: Evidence for wind-driven current fluctuations in the western North Atlantic. J. Geophys. Res., 94 (C2), 20292044.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1962: Measurements of meridional heat transport by ocean currents. J. Geophys. Res., 67, 34033414.

  • Bryan, K., 1982a: Poleward heat transport by the ocean: Observations and models. Annu. Rev. Earth Planet. Sci., 10, 1538.

  • Bryan, K., 1982b: Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study. J. Mar. Res., 40, 3953.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84 (C5), 25032517.

  • Bryden, H. L., 1993: Ocean heat transport across 24° latitude. Interactions between Global Climate Subsystem: The Legacy of Hann, Geophys. Monogr., Vol. 75, Amer. Geophys. Union, 65–75.

  • Bryden, H. L., and M. M. Hall, 1983: Heat transport by currents across 25°N latitude in the Atlantic Ocean. Science, 207, 884886.

  • Bryden, H. L., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysical Series, Vol. 77, Academic Press, 455–474.

  • Carissimo, B. C., A. H. Oort, and T. H. V. Haar, 1985: Estimating the meridional energy transports in the atmosphere and ocean. J. Phys. Oceanogr., 15, 8291.

    • Search Google Scholar
    • Export Citation
  • Christian, J. R., and Coauthors, 2010: The global carbon cycle in the Canadian Earth system model (CanESM1): Preindustrial control simulation. J. Geophys. Res., 115, G03014, doi:10.1029/2008JG000920.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and W. D. I. Hibler, 1992: Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626651.

  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modeling and Analysis global coupled model and its climate. Climate Dyn., 16, 451467.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and O. A. Saenko, 2005: Human-induced change in the Antarctic Circumpolar Current. J. Climate, 18, 30683073.

  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. Large, and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11, 12871306.

    • Search Google Scholar
    • Export Citation
  • Ghirardelli, J. E., M. M. Rienecker, and D. Adamec, 1995: Meridional Ekman heat transport: Estimates from satellite data. J. Phys. Oceanogr., 25, 27412755.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gulev, S. K., B. Barnier, H. Knochel, J.-M. Molines, and M. Cottet, 2003: Water mass transformation in the North Atlantic and its impact on the meridional circulation: Insights from an ocean model forced by NCEP–NCAR reanalysis surface fluxes. J. Climate, 16, 30853110.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, M. Winton, and A. Clement, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A, 662675.

    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., and J. K. Willis, 2012: Midlatitude North Atlantic heat transport: A time series based on satellite and drifter data. J. Geophys. Res., 117, C01008, doi:10.1029/2011JC007039.

    • Search Google Scholar
    • Export Citation
  • Holfort, J., and G. Siedler, 2001: The meridional oceanic transports of heat and nutrients in the South Atlantic. J. Phys. Oceanogr., 31, 529.

    • Search Google Scholar
    • Export Citation
  • Hsiung, J., 1985: Estimates of global oceanic meridional heat transport. J. Phys. Oceanogr., 15, 14051413.

  • Hsiung, J., R. E. Newell, and T. Houghtby, 1989: The annual cycle of oceanic heat storage and oceanic meridional heat transport. Quart. J. Roy. Meteor. Soc., 115, 128.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411.

  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345.

  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449.

    • Search Google Scholar
    • Export Citation
  • Keith, D. W., 1995: Meridional energy transport: Uncertainty in zonal means. Tellus, 47A, 3044.

  • Klein, B., R. L. Molinari, T. J. Muller, and G. Siedler, 1995: A transatlantic section at 14.5°N: Meridional volume and heat fluxes. J. Mar. Res., 53, 929957.

    • Search Google Scholar
    • Export Citation
  • Koblinsky, C. J., and P. P. Niiler, 1982: The relationship between deep ocean currents and wind east of Barbados. J. Phys. Oceanogr., 12, 144153.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and S. Levitus, 1986: Annual heat flux variations across the Tropic circles. J. Phys. Oceanogr., 16, 14791486.

  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518536.

    • Search Google Scholar
    • Export Citation
  • Lavin, A., H. L. Bryden, and G. Parrilla, 1998: Meridional transport and heat flux variations in the subtropical North Atlantic. Global Atmos. Ocean Syst., 6, 269293.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1987: Meridional Ekman heat fluxes for the World Ocean and individual ocean basins. J. Phys. Oceanogr., 17, 14841492.

  • Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41, 281382.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5, 10131044.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlock, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Toulouse, France, 13–21.

  • Nakano, H., R. Furue, and N. Suginohara, 1999: Effect of seasonal forcing on global circulation in a world ocean general circulation model. Climate Dyn., 15, 491502.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and C. J. Koblinsky, 1985: A local time-dependent Sverdrup balance in the eastern North Pacific Ocean. Science, 229, 754756.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., J. Filloux, W. T. Liu, R. M. Samelson, J. D. Paduan, and C. A. Paulson, 1993: Wind-forced variability of the deep eastern North Pacific: Observations of seafloor pressure and abyssal currents. J. Geophys. Res., 98 (C12), 22 58922 602.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Saenko, O. A., 2008: On the strong currents in the deep ocean. J. Climate, 21, 56425656.

  • Saenko, O. A., 2009: On the climatic impact of wind stress. J. Phys. Oceanogr., 39, 89106.

  • Shore, J., M. W. Stacey, and D. G. Wright, 2008: Sources of eddy energy simulated by a model of the northeast Pacific Ocean. J. Phys. Oceanogr., 38, 22832293.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., J. Holfort, T. Reynaud, and G. Siedler, 1996: South Atlantic heat transport at 11°S. The South Atlantic: Past and Present Circulation, G. Wefer et al., Eds., Springer-Verlag, 105–120.

  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10, 107134.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Volkov, D., L. Fu, and T. Lee, 2010: Mechanisms of the meridional heat transport in the southern ocean. Ocean Dyn., 60, 791801.

  • Wilkin, J. L., J. V. Mansbridge, and J. S. Godfrey, 1995: Pacific Ocean heat transport at 24°N in a high-resolution global model. J. Phys. Oceanogr., 25, 22042214.

    • Search Google Scholar
    • Export Citation
  • Willebrand, J., S. G. H. Philander, and R. C. Pacanowski, 1980: The oceanic response to large-scale atmospheric disturbances. J. Phys. Oceanogr., 10, 411429.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18, 43744380.

  • Wunsch, C., and P. Heimbach, 2006: Estimated decadal changes in the North Atlantic meridional overturning and heat flux. J. Phys. Oceanogr., 36, 20122024.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2009: The global zonally integrated ocean circulation, 1992–2006: Seasonal and decadal variability. J. Phys. Oceanogr., 39, 351368.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1981: The vertical structure of the wind driven circulation. Ph.D. dissertation, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 215 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 9 9 9

Ocean Heat Transport and Its Projected Change in CanESM2

View More View Less
  • 1 Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada
Restricted access

Abstract

The meridional ocean heat transport (MOHT), its seasonal variability, and projected changes simulated by the second generation Canadian Earth System Model (CanESM2) are presented. The global mean MOHT is within the uncertainty of the observational estimates. However, a correct simulation of the MOHT for individual ocean basins is more challenging, and the Atlantic MOHT south of 30°N is underestimated. The partitioning of the MOHT into the overturning and gyre components is generally consistent with such partitioning in an observationally optimized ocean model. At low latitudes, the time-mean MOHT is dominated by its overturning component, whereas in the Southern Ocean and, especially, in the subpolar North Atlantic, it is the gyre component that plays a more important role. In the projected warmer climates, CanESM2 simulates a weakening of the poleward MOHT essentially in both hemispheres. The projected MOHT changes are largely determined by the overturning component, except in the subpolar Atlantic where it is dominated by the gyre component. Consistent with (the limited number of) previous studies, the seasonal variability of the MOHT is large and is mostly driven by the seasonal variability of the meridional Ekman transport. In the simulated warmer climates, the seasonal cycle of the MOHT is projected to change, mostly in the tropics and also in the Southern Hemisphere midlatitudes. The eddy contribution to the MOHT is broadly consistent with that in the observationally optimized eddy-permitting model. However, in the tropics a significant fraction of the eddy energy is converted back to the mean circulation, and the heat transports due to the parameterized and permitted eddies differ.

Corresponding author address: Duo Yang, CCCma, 3800 Finnerty Road, Victoria BC V8P 5C2, Canada. E-mail: duo.yang@ec.gc.ca

Abstract

The meridional ocean heat transport (MOHT), its seasonal variability, and projected changes simulated by the second generation Canadian Earth System Model (CanESM2) are presented. The global mean MOHT is within the uncertainty of the observational estimates. However, a correct simulation of the MOHT for individual ocean basins is more challenging, and the Atlantic MOHT south of 30°N is underestimated. The partitioning of the MOHT into the overturning and gyre components is generally consistent with such partitioning in an observationally optimized ocean model. At low latitudes, the time-mean MOHT is dominated by its overturning component, whereas in the Southern Ocean and, especially, in the subpolar North Atlantic, it is the gyre component that plays a more important role. In the projected warmer climates, CanESM2 simulates a weakening of the poleward MOHT essentially in both hemispheres. The projected MOHT changes are largely determined by the overturning component, except in the subpolar Atlantic where it is dominated by the gyre component. Consistent with (the limited number of) previous studies, the seasonal variability of the MOHT is large and is mostly driven by the seasonal variability of the meridional Ekman transport. In the simulated warmer climates, the seasonal cycle of the MOHT is projected to change, mostly in the tropics and also in the Southern Hemisphere midlatitudes. The eddy contribution to the MOHT is broadly consistent with that in the observationally optimized eddy-permitting model. However, in the tropics a significant fraction of the eddy energy is converted back to the mean circulation, and the heat transports due to the parameterized and permitted eddies differ.

Corresponding author address: Duo Yang, CCCma, 3800 Finnerty Road, Victoria BC V8P 5C2, Canada. E-mail: duo.yang@ec.gc.ca
Save