• Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, doi:10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412.

  • Ashok, K., W.-L. Chan, T. Motoi, and T. Yamagata, 2004: Decadal variability of the Indian Ocean dipole. Geophys. Res. Lett., 31, L24207, doi:10.1029/2004GL021345.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., L. Tim, and C.-F. Shih, 2007: Fall persistence barrier of sea surface temperature in the South China Sea associated with ENSO. J. Climate, 20, 158172.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., and C. Gnanaseelan, 2007: Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int. J. Climatol., 27, 14211438.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 1999: The connection between the boreal spring Southern Oscillation persistence barrier and biennial variability. J. Climate, 12, 610620.

    • Search Google Scholar
    • Export Citation
  • Ding, R.-Q., and J.-P. Li, 2009: Decadal and seasonal dependence of North Pacific SST persistence. J. Geophys. Res., 114, D01105, doi:10.1029/2008JD010723.

    • Search Google Scholar
    • Export Citation
  • Ding, R.-Q., and J.-P. Li, 2011: Winter persistence barrier of sea surface temperature in the northern tropical Atlantic associated with ENSO. J. Climate, 24, 22852299.

    • Search Google Scholar
    • Export Citation
  • Ding, R.-Q., K.-J. Ha, and J.-P. Li, 2009: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 10591071.

    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K.-M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038.

    • Search Google Scholar
    • Export Citation
  • Duan, W., X. Liu, K. Zhu, and M. Mu, 2009: Exploring initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114, C04022, doi:10.1029/2008JC004925.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., 1996: Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys. Res. Lett., 23, 33053308.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102 (C1), 929945.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. H. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple resolutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Goswami, B. N., and J. Shukla, 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4, 322.

  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6, 20492062.

    • Search Google Scholar
    • Export Citation
  • Hong, C. -C., T. Li, J.-S. LinHo, and J.-S. Kug, 2008a: Asymmetry of Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848.

    • Search Google Scholar
    • Export Citation
  • Hong, C. -C., T. Li, and J.-J. Luo, 2008b: Asymmetry of Indian Ocean dipole. Part II: Model diagnosis. J. Climate, 21, 48494858.

  • Hong, C. -C., T. Li, Y.-C. LinHo, and Y.-C. Chen, 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 35633576.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP–NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kawamura, R., T. Matsumura, and S. Iizuka, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño–Southern Oscillation coupling. J. Geophys. Res., 106 (D5), 46814693.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and S.-I. An, 2010: Ocean dynamic processes responsible for the interannual variability of the tropical Indian Ocean SST associated with ENSO. Atmosphere, 20, 211219.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 (C2), 32953306.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1984: The Southern Oscillation and Indonesian sea surface temperature. Mon. Wea. Rev., 112, 424432.

  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., X. Wand, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1, 7196.

  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17, 362372.

    • Search Google Scholar
    • Export Citation
  • Su, J.-Z., R.-H. Zhang, T. Li, X.-Y. Rong, J.-S. Kug, and C.–C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., and Y. Tanimoto, 2004: Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean dipole years. J. Meteor. Soc. Japan, 82, 10071018.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño–Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 19852004.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. Latif, and A. Villwock, 2000: The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO. J. Climate, 13, 13171383.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2005: Potential predictability of tropical Indian Ocean SST anomalies. Geophys. Res. Lett., 32, L24702, doi:10.1029/2005GL024169.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate. J. Climate, 13, 15171536.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877925.

  • Wu, B., T. Li, and T.-J. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 48074822.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. Schott, and J. P. McCreary Jr., 2002: Origin and predictability of South Indian Ocean climate variability. J. Climate, 15, 864878.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K.-M. Hu, J. Hafner, Y. Du, G. Huang, and H. Tokinaga, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., 2005: Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere–ocean general circulation model. J. Geophys. Res., 32, L13707, doi:10.1029/2005GL023406.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

  • Zhang, C.-J., and H.-Q. Zhang, 2010: Potential impacts of East Asian winter monsoon on climate variability and predictability in the Australian summer monsoon region. Theor. Appl. Climatol., 101, 161177.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and J.-P. Li, 2009: Possible causes for the persistence barrier of SSTA in the South China Sea and the vicinity of Indonesia. Adv. Atmos. Sci., 26, 11251136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Influences of ENSO Teleconnection on the Persistence of Sea Surface Temperature in the Tropical Indian Ocean

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

This study confirms a weak spring persistence barrier (SPB) of sea surface temperature anomalies (SSTAs) in the western tropical Indian Ocean (WIO), a strong fall persistence barrier (FPB) in the South China Sea (SCS), and the strongest winter persistence barrier (WPB) in the southeastern tropical Indian Ocean (SEIO). During El Niño events, a less abrupt sign reversal of SSTAs occurs in the WIO during spring, an abrupt reversal occurs in the SCS during fall, and the most abrupt reversal occurs in the SEIO during winter. The sign reversal of SSTA implies a rapid decrease in SSTA persistence, which is favorable for the occurrence of a persistence barrier. The present results indicate that a more abrupt reversal of SSTA sign generally corresponds to a more prominent persistence barrier. El Niño–induced changes in atmospheric circulation result in reduced evaporation and suppressed convection. This in turn leads to the warming over much of the TIO basin, which is an important mechanism for the abrupt switch in SSTA, from negative to positive, in the northern SCS and SEIO. The seasonal cycle of the prevailing surface winds has a strong influence on the timing of the persistence barriers in the TIO.

The Indian Ocean dipole (IOD) alone can cause a weak WPB in the SEIO. El Niño events co-occurring with positive IOD further strengthen the SEIO WPB. The SEIO WPB appears to be more strongly influenced by ENSO than by the IOD. In contrast, the WIO SPB and the SCS FPB are relatively independent of the IOD.

Corresponding author address: Dr. Jianping Li, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: ljp@lasg.iap.ac.cn

Abstract

This study confirms a weak spring persistence barrier (SPB) of sea surface temperature anomalies (SSTAs) in the western tropical Indian Ocean (WIO), a strong fall persistence barrier (FPB) in the South China Sea (SCS), and the strongest winter persistence barrier (WPB) in the southeastern tropical Indian Ocean (SEIO). During El Niño events, a less abrupt sign reversal of SSTAs occurs in the WIO during spring, an abrupt reversal occurs in the SCS during fall, and the most abrupt reversal occurs in the SEIO during winter. The sign reversal of SSTA implies a rapid decrease in SSTA persistence, which is favorable for the occurrence of a persistence barrier. The present results indicate that a more abrupt reversal of SSTA sign generally corresponds to a more prominent persistence barrier. El Niño–induced changes in atmospheric circulation result in reduced evaporation and suppressed convection. This in turn leads to the warming over much of the TIO basin, which is an important mechanism for the abrupt switch in SSTA, from negative to positive, in the northern SCS and SEIO. The seasonal cycle of the prevailing surface winds has a strong influence on the timing of the persistence barriers in the TIO.

The Indian Ocean dipole (IOD) alone can cause a weak WPB in the SEIO. El Niño events co-occurring with positive IOD further strengthen the SEIO WPB. The SEIO WPB appears to be more strongly influenced by ENSO than by the IOD. In contrast, the WIO SPB and the SCS FPB are relatively independent of the IOD.

Corresponding author address: Dr. Jianping Li, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: ljp@lasg.iap.ac.cn
Save