• Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, doi:10.1126/science.288.5468.1042.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697.

    • Search Google Scholar
    • Export Citation
  • Chand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson, 2009: Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci., 2, 181184, doi:10.1038/ngeo437.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43A, 152163, doi:10.1034/j.1600-0870.1991.00013.x.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and V. Ramanathan, 2006: Weakening of north Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate, 19, 20362045.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929931.

  • Coakley, J. A., and R. D. Cess, 1985: Response of the NCAR Community Climate Model to the radiative forcing by the naturally occurring tropospheric aerosol. J. Atmos. Sci., 42, 16771692.

    • Search Google Scholar
    • Export Citation
  • Collier, J., and G. Zhang, 2009: Aerosol direct forcing of the summer Indian monsoon as simulated by the NCAR CAM3. Climate Dyn., 32, 313332, doi:10.1007/s00382-008-0464-9.

    • Search Google Scholar
    • Export Citation
  • Denman, K., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 499–587.

  • Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev., 3, 4367, doi:10.5194/gmd-3-43-2010.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 (D6), 68316864.

  • Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett., 22, 603606.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., S. R. Osborne, P. N. Francis, A. Keil, P. Formenti, M. O. Andreae, and P. H. Kaye, 2003: The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J. Geophys. Res., 108, 8473, doi:10.1029/2002JD002226.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., S. R. Osborne, and S. J. Abel, 2004: The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth. Quart. J. Roy. Meteor. Soc., 130, 779800, doi:10.1256/qj.03.100.

    • Search Google Scholar
    • Export Citation
  • Huang, J., A. Adams, C. Wang, and C. Zhang, 2009a: Black carbon and West African monsoon precipitation: Observations and simulations. Ann. Geophys., 27, 41714181, doi:10.5194/angeo-27-4171-2009.

    • Search Google Scholar
    • Export Citation
  • Huang, J., C. Zhang, and J. M. Prospero, 2009b: African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res., 115, D05202, doi:10.1029/2009JD012516.

    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, doi:10.5194/acp-11-7781-2011.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., K. P. Shine, and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 14071422, doi:10.1256/qj.03.61.

    • Search Google Scholar
    • Export Citation
  • Junker, C., and C. Liousse, 2008: A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos. Chem. Phys., 8, 11951207, doi:10.5194/acp-8-1195-2008.

    • Search Google Scholar
    • Export Citation
  • Kasischke, E. S., and J. E. Penner, 2004: Improving global estimates of atmospheric emissions from biomass burning. J. Geophys. Res., 109, D14S01, doi:10.1029/2004JD004972.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y., and Coauthors, 2005: A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens., 43, 28862897, doi:10.1109/TGRS.2005.858430.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2009: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys., 9, 90019026, doi:10.5194/acp-9-9001-2009.

    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins, 2004: Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science, 303, 13421345.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., J. T. Kiehl, P. G. Hess, W. D. Collins, L. K. Emmons, P. Ginoux, C. Luo, and X. X. Tie, 2005: Response of a coupled chemistry–climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone, and NOx. Geophys. Res. Lett., 32, L16809, doi:10.1029/2005GL023419.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Lau, K., M. Kim, and K. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, doi:10.1007/s00382-006-0114-z.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Saravanan, and P. Chang, 2009: The role of the wind–evaporation–sea surface temperature (WES) feedback in air–sea coupled tropical variability. Atmos. Res., 94, 1936.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Saravanan, and P. Chang, 2010: Free and forced variability of the tropical Atlantic Ocean: Role of the wind–evaporation–sea surface temperature feedback. J. Climate, 23, 59585977.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., J.-F. Lamarque, X. X. Tie, and E. Wolff, 2006a: Sea-salt aerosol response to climate change: Last glacial maximum, preindustrial, and doubled carbon dioxide climates. J. Geophys. Res., 111, D05303, doi:10.1029/2005JD006459.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo, 2006b: Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111, D10202, doi:10.1029/2005JD006653.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., and Coauthors, 2010: Observed 20th century desert dust variability: Impact on climate and biogeochemistry. Atmos. Chem. Phys., 10, 10 87510 893, doi:10.5194/acp-10-10875-2010.

    • Search Google Scholar
    • Export Citation
  • Matichuk, R. I., P. R. Colarco, J. A. Smith, and O. B. Toon, 2007: Modeling the transport and optical properties of smoke aerosols from African savanna fires during the Southern African Regional Science Initiative Campaign (SAFARI 2000). J. Geophys. Res., 112, D08203, doi:10.1029/2006JD007528.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM4). NCAR Tech. Rep. NCAR/TN-485+STR, 194 pp.

  • Philander, S. G. H., D. Gu, G. Lambert, T. Li, D. Halpern, N. C. Lau, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972.

    • Search Google Scholar
    • Export Citation
  • Pöschl, U., and Coauthors, 2010: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329, 15131516.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. Carlson, 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77, 52555265.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and P. J. Lamb, 2003: African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 10241027.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, doi:10.5194/acp-9-8697-2009.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2001: Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106 (D22), 28 37128 398.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102, 53265333.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973.

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796.

  • Sakaeda, N., R. Wood, and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res., 116, D12205, doi:10.1029/2010JD015540.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2004: Thermodynamic coupling and predictability of tropical sea surface temperature. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 171–180.

  • Satheesh, S. K., and V. Ramanathan, 2000: Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature, 405, 6063, doi:10.1038/35011039.

    • Search Google Scholar
    • Export Citation
  • Schultz, M. G., and Coauthors, 2008: Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles, 22, GB2002, doi:10.1029/2007GB003031.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., H. Pitcher, and T. Wigley, 2001: Global and regional anthropogenic sulfur dioxide emissions. Global Planet. Change, 29, 99119, doi:10.1016/S0921-8181(00)00057-6.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. Delgado Arias, 2011: Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys., 11, 11011116, doi:10.5194/acp-11-1101-2011.

    • Search Google Scholar
    • Export Citation
  • Tie, X., G. Brasseur, L. Emmons, L. Horowitz, and D. Kinnison, 2001: Effects of aerosols on tropospheric oxidants: A global model study. J. Geophys. Res., 106 (D19), 22 93122 964.

    • Search Google Scholar
    • Export Citation
  • Tie, X., and Coauthors, 2005: Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res., 110, D03204, doi:10.1029/2004JD005359.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Wilcox, E. M., 2010: Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol. Atmos. Chem. Phys., 10, 11 76911 777, doi:10.5194/acp-10-11769-2010.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008: Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. Tellus, 60A, 839847, doi:10.1111/j.1600-0870.2008.00340.x.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

  • Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20, 14451467.

    • Search Google Scholar
    • Export Citation
  • Yu, H., and Coauthors, 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613666, doi:10.5194/acp-6-613-2006.

    • Search Google Scholar
    • Export Citation
  • Zender, C. S., H. Bian, and D. Newman, 2003: Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108, 4416, doi:10.1029/2002JD002775.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 0 0 0

Interannual Tropospheric Aerosol Variability in the Late Twentieth Century and Its Impact on Tropical Atlantic and West African Climate by Direct and Semidirect Effects

View More View Less
  • 1 Oak Ridge National Laboratory, Oak Ridge, Tennessee
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Oak Ridge National Laboratory, Oak Ridge, Tennessee
  • | 4 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the period 1961–2000 to identify tropospheric aerosol-induced interannual climate variations. The surface emissions dataset is constructed from phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal-resolution surface emissions dataset to include reanalysis of tropospheric chemical composition [40-yr Reanalysis of Tropospheric Chemical Composition (RETRO)] wildfire monthly emissions data. A four-member ensemble run is conducted using the spectral configuration of CAM4, forced with the new tropospheric aerosol dataset and prescribed with observed sea surface temperature, sea ice, and greenhouse gases. CAM4 only simulates the direct and semidirect effects of aerosols on the climate. The simulations reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the interannual time scales. Regression analyses over tropical Atlantic and Africa suggest that increasing dust aerosols can cool the North African landmass and shift convection southward from West Africa into the Gulf of Guinea in the spring season. Further, it is found that carbonaceous aerosols emanating from the southwestern African savannas can significantly cool the region and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic Ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present-day aerosols can cool the tropical North Atlantic and shift the intertropical convergence zone southward and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

Corresponding author address: Salil Mahajan, 1 Bethel Valley Road, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, TN 37831. E-mail: mahajans@ornl.gov

Abstract

A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the period 1961–2000 to identify tropospheric aerosol-induced interannual climate variations. The surface emissions dataset is constructed from phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal-resolution surface emissions dataset to include reanalysis of tropospheric chemical composition [40-yr Reanalysis of Tropospheric Chemical Composition (RETRO)] wildfire monthly emissions data. A four-member ensemble run is conducted using the spectral configuration of CAM4, forced with the new tropospheric aerosol dataset and prescribed with observed sea surface temperature, sea ice, and greenhouse gases. CAM4 only simulates the direct and semidirect effects of aerosols on the climate. The simulations reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the interannual time scales. Regression analyses over tropical Atlantic and Africa suggest that increasing dust aerosols can cool the North African landmass and shift convection southward from West Africa into the Gulf of Guinea in the spring season. Further, it is found that carbonaceous aerosols emanating from the southwestern African savannas can significantly cool the region and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic Ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present-day aerosols can cool the tropical North Atlantic and shift the intertropical convergence zone southward and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

Corresponding author address: Salil Mahajan, 1 Bethel Valley Road, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, TN 37831. E-mail: mahajans@ornl.gov
Save