Variations in Tropical Cyclone Genesis Factors in Simulations of the Holocene Epoch

Robert L. Korty Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Robert L. Korty in
Current site
Google Scholar
PubMed
Close
,
Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
, and
Joseph Galewsky Department of Earth Sciences, University of New Mexico, Albuquerque, New Mexico

Search for other papers by Joseph Galewsky in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The thermodynamic factors related to tropical cyclone genesis are examined in several simulations of the middle part of the Holocene epoch when the precession of Earth’s orbit altered the seasonal distribution of solar radiation and in one transient simulation of the millennium preceding the industrial era. The thermodynamic properties most crucial for genesis display a broad stability across both periods, although both orbital variations during the mid-Holocene (MH) 6000 years ago (6ka) and volcanic eruptions in the transient simulation have detectable effects. It is shown that the distribution of top-of-the-atmosphere radiation 6ka altered the Northern Hemisphere seasonal cycle of the potential intensity of tropical cyclones in addition to slightly increasing the difference between middle tropospheric and boundary layer entropy, a parameter that has been related to the incubation period required for genesis. The Southern Hemisphere, which receives more solar radiation during its storm season today than it did 6ka, displays slightly more favorable thermodynamic properties during the MH than in the preindustrial era control. Surface temperatures over the ocean in both hemispheres respond to radiation anomalies more slowly than those in upper levels, altering the thermal stability.

Volcanism produces a sharp but transient temperature response in the last-millennium simulation that strongly reduces potential intensity during the seasons immediately following a major eruption. Here, too, the differential vertical temperature response is key: temperatures in the lower and middle troposphere cool, while those near the tropopause rise. Aside from these deviations, there is no substantial variation in thermodynamic properties over the 1000-yr simulation.

Corresponding author address: Robert L. Korty, Department of Atmospheric Sciences, Texas A&M University, TAMU 3150, College Station, TX 77843-3150. E-mail: korty@tamu.edu

Abstract

The thermodynamic factors related to tropical cyclone genesis are examined in several simulations of the middle part of the Holocene epoch when the precession of Earth’s orbit altered the seasonal distribution of solar radiation and in one transient simulation of the millennium preceding the industrial era. The thermodynamic properties most crucial for genesis display a broad stability across both periods, although both orbital variations during the mid-Holocene (MH) 6000 years ago (6ka) and volcanic eruptions in the transient simulation have detectable effects. It is shown that the distribution of top-of-the-atmosphere radiation 6ka altered the Northern Hemisphere seasonal cycle of the potential intensity of tropical cyclones in addition to slightly increasing the difference between middle tropospheric and boundary layer entropy, a parameter that has been related to the incubation period required for genesis. The Southern Hemisphere, which receives more solar radiation during its storm season today than it did 6ka, displays slightly more favorable thermodynamic properties during the MH than in the preindustrial era control. Surface temperatures over the ocean in both hemispheres respond to radiation anomalies more slowly than those in upper levels, altering the thermal stability.

Volcanism produces a sharp but transient temperature response in the last-millennium simulation that strongly reduces potential intensity during the seasons immediately following a major eruption. Here, too, the differential vertical temperature response is key: temperatures in the lower and middle troposphere cool, while those near the tropopause rise. Aside from these deviations, there is no substantial variation in thermodynamic properties over the 1000-yr simulation.

Corresponding author address: Robert L. Korty, Department of Atmospheric Sciences, Texas A&M University, TAMU 3150, College Station, TX 77843-3150. E-mail: korty@tamu.edu
Save
  • Berger, A. L., 1978: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 23622367.

  • Biasutti, M., and A. H. Sobel, 2009: Delayed Sahel rainfall and global seasonal cyclone in a warmer climate. Geophys. Res. Lett., 36, L23707, doi:10.1029/2009GL041303.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007a: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: Experiments and large-scale features. Climate Past, 3, 261277.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007b: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, and M. A. Cane, 2000: Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography, 15, 731737.

    • Search Google Scholar
    • Export Citation
  • Conroy, J. L., J. T. Overpeck, J. E. Cole, T. M. Shanahan, and M. Steinitz-Kannan, 2008: Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev., 27, 11661180.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087.

  • Donnelly, J. P., 2005: Evidence of past intense tropical cyclones from backbarrier salt pond sediments: A case study from Isla de Culebrita, Puerto Rico, USA. J. Coastal Res., I42, 201210.

    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5000 years controlled by El Niño and the West African monsoon. Nature, 447, 465468.

    • Search Google Scholar
    • Export Citation
  • Eady, J. A., 1976: The Maunder minimum. Science, 192, 11891202.

  • Elsner, J. B., and T. H. Jagger, 2008: United States and Caribbean tropical cyclone activity related to the solar cycle. Geophys. Res. Lett., 35, L18705, doi:10.1029/2008GL034431.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., T. H. Jagger, and R. E. Hodges, 2010: Daily tropical cyclone intensity response to solar ultraviolet radiation. Geophys. Res. Lett., 37, L09701, doi:10.1029/2010GL043091.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485.

  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39593968.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Reply. Nature, 438, E13, doi:10.1038/nature04427.

  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908-1958. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., 2012: Atlantic hurricane activity following two major volcanic eruptions. J. Geophys. Res., 117, D06101, doi:10.1029/2011JD016716.

    • Search Google Scholar
    • Export Citation
  • Federov, A. V., C. M. Breierly, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070.

    • Search Google Scholar
    • Export Citation
  • Frappier, A., T. Knutson, K.-B. Liu, and K. Emanuel, 2007: Perspective: Coordinating paleoclimate research on tropical cyclones with hurricane-climate theory and modelling. Tellus, 59A, 529537.

    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Hodges, R. E., and J. B. Elsner, 2011: Evidence linking solar variability with US hurricanes. Int. J. Climatol., 31, 18971907, doi:10.1002/joc.2196.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and M. E. Mann, 2004: Climate over past millennia. Rev. Geophys., 42, RG2002, doi:10.1029/2003RG000143.

  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J. Climate, 25, 43484365.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., B. L. Otto-Bliesner, E. R. Wahl, A. Conley, P. J. Lawrence, N. Rosenbloom, and H. Teng, 2012: Last millennium climate and its variability in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Lane, P., J. P. Donnelly, J. D. Woodruff, and A. D. Hawkes, 2011: A decadally-resolved paleohurricane record archived in the late Holocene sediments of a Florida sinkhole. Mar. Geol., 287, 1430.

    • Search Google Scholar
    • Export Citation
  • Lighty, R. G., I. G. Macintyre, and R. Stuckenrath, 1982: Acropora palmata reef framework: A reliable indicator of sea level in the western Atlantic for the past 10,000 years. Coral Reefs, 1, 125130.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. C. H. Chiang, 2007: Adjustment of the remote tropical climate to El Niño conditions. J. Climate, 20, 25442557.

    • Search Google Scholar
    • Export Citation
  • Liu, K.-B., and M. L. Fearn, 1993: Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21, 793796.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1999: Northern Hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett., 26, 759762.

    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., S. T. Garner, and O. M. Pauluis, 2011: Axisymmetric hurricane in a dry atmosphere: Theoretical framework and numerical experiments. J. Atmos. Sci., 68, 16071619.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorability for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, doi:10.1029/2011MS000063.

    • Search Google Scholar
    • Export Citation
  • Nott, J., S. Smithers, K. Walsh, and E. Rhodes, 2009: Sand beach ridges record 6000 year history of extreme tropical cyclone activity in northeastern Australia. Quat. Sci. Rev., 28, 15111520.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19, 25262544.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev., 4, 3345.

    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Rojas, A. Giannini, and S. J. Camargo, 2011: Enhanced spring convection barrier for monsoons in a warmer world? Climatic Change, 104, 403414.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., A. Untch, C. Jakob, P. Kållberg, and P. Undén, 1999: Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Quart. J. Roy. Meteor. Soc., 125, 353386.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and S. J. Camargo, 2011: Projected future changes in tropical summer climate. J. Climate, 24, 473487.

  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and K. A. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070.

    • Search Google Scholar
    • Export Citation
  • Woodruff, J. D., J. P. Donnelly, K. Emanuel, and P. Lane, 2008: Assessing sedimentary records of paleohurricane activity using modeled hurricane climatology. Geochem. Geophys. Geosyst., 9, Q09V10, doi:10.1029/2008GC002043.

    • Search Google Scholar
    • Export Citation
  • Woodruff, J. D., J. P. Donnelly, and A. Okusu, 2009: Exploring typhoon variability over the mid-to-late Holocene: Evidence of extreme coastal flooding from Kamikoshiki, Japan. Quat. Sci. Rev., 28, 17741785.

    • Search Google Scholar
    • Export Citation
  • Xu, K., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1156 468 46
PDF Downloads 605 98 14