Sources of Spread in Multimodel Projections of the Greenland Ice Sheet Surface Mass Balance

Masakazu Yoshimori Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

Search for other papers by Masakazu Yoshimori in
Current site
Google Scholar
PubMed
Close
and
Ayako Abe-Ouchi Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, and Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Ayako Abe-Ouchi in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The many studies investigating the future change of the Greenland Ice Sheet surface mass balance from climate model output exhibit a wide range of projections. This study makes projections from the Coupled Model Intercomparison Project phase 3 models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report and explores the underlying physical processes behind their spread. The projections are made for three Special Report on Emissions Scenarios, B1, A1B, and A2, with a focused analysis on the A1B scenario. The estimate in the study suggests that about 60% of the intermodel difference in the twenty-first-century ablation rate change under the A1B scenario is accounted for by the global annual mean temperature change. In the current study, other processes responsible for the spread in model projections are investigated after excluding this global effect. A negative correlation (−0.60) was found between the simulated summer temperature bias over the Greenland Ice Sheet under present-day conditions and the ablation rate increase during the twenty-first century, partly because maximum warming over ice is approximately limited to the melting temperature. Models with relatively larger ablation rate increases during the twenty-first century exhibit greater warming with a greater reduction in sea ice cover. The authors found that these models also simulate relatively cooler summer conditions in high latitudes with more sea ice cover in the late twentieth century, suggesting the importance of sea ice feedbacks. Also, an anticorrelation (−0.75) is found between weakening of the Atlantic meridional overturning circulation and the ablation rate increase during the twenty-first century. The relation in the model spread between the twenty-first-century ablation change and the late twentieth-century climate conditions is then used to investigate the impact of model bias on the multimodel ensemble of projections. The result suggests that the models’ underestimation of present-day sea ice concentration near the coast of Greenland may cause an underestimation of future Greenland Ice Sheet ablation rate increase in the ensemble projection. These results emphasize the importance of correctly simulating present-day conditions and understanding the underlying multiple physical processes behind the intermodel difference to reduce the uncertainty in future projections.

Corresponding author address: Masakazu Yoshimori, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: masakazu@aori.u-tokyo.ac.jp

Abstract

The many studies investigating the future change of the Greenland Ice Sheet surface mass balance from climate model output exhibit a wide range of projections. This study makes projections from the Coupled Model Intercomparison Project phase 3 models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report and explores the underlying physical processes behind their spread. The projections are made for three Special Report on Emissions Scenarios, B1, A1B, and A2, with a focused analysis on the A1B scenario. The estimate in the study suggests that about 60% of the intermodel difference in the twenty-first-century ablation rate change under the A1B scenario is accounted for by the global annual mean temperature change. In the current study, other processes responsible for the spread in model projections are investigated after excluding this global effect. A negative correlation (−0.60) was found between the simulated summer temperature bias over the Greenland Ice Sheet under present-day conditions and the ablation rate increase during the twenty-first century, partly because maximum warming over ice is approximately limited to the melting temperature. Models with relatively larger ablation rate increases during the twenty-first century exhibit greater warming with a greater reduction in sea ice cover. The authors found that these models also simulate relatively cooler summer conditions in high latitudes with more sea ice cover in the late twentieth century, suggesting the importance of sea ice feedbacks. Also, an anticorrelation (−0.75) is found between weakening of the Atlantic meridional overturning circulation and the ablation rate increase during the twenty-first century. The relation in the model spread between the twenty-first-century ablation change and the late twentieth-century climate conditions is then used to investigate the impact of model bias on the multimodel ensemble of projections. The result suggests that the models’ underestimation of present-day sea ice concentration near the coast of Greenland may cause an underestimation of future Greenland Ice Sheet ablation rate increase in the ensemble projection. These results emphasize the importance of correctly simulating present-day conditions and understanding the underlying multiple physical processes behind the intermodel difference to reduce the uncertainty in future projections.

Corresponding author address: Masakazu Yoshimori, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: masakazu@aori.u-tokyo.ac.jp
Save
  • Abe-Ouchi, A., S. Segawa, and F. Saito, 2007: Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle. Climate Past, 3, 423438.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., P. U. Clark, P. Huybrechts, and I. Joughin, 2005: Ice-sheet and sea-level changes. Science, 310, 456460.

  • Bales, R. C., and Coauthors, 2009: Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J. Geophys. Res., 114, D06116, doi:10.1029/2008JD011208.

    • Search Google Scholar
    • Export Citation
  • Bartholomew, I., P. Nienow, D. Mair, A. Hubbard, M. A. King, and A. Sole, 2010: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci., 3, 408411.

    • Search Google Scholar
    • Export Citation
  • Baur, O., M. Kuhn, and W. E. Featherstone, 2009 : GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J. Geophys. Res., 114, B06407, doi:10.1029/2008JB006239.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci., 2, 341343.

    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall, and X. Qu, 2010: Sources of spread in simulations of Arctic sea ice loss over the twenty-first century. Climatic Change, 99, 637645.

    • Search Google Scholar
    • Export Citation
  • Bougamont, M., J. L. Bamber, and W. Greuell, 2005: A surface mass balance model for the Greenland Ice Sheet. J. Geophys. Res., 110, F04018, doi:10.1029/2005JF000348.

    • Search Google Scholar
    • Export Citation
  • Bougamont, M., J. L. Bamber, J. K. Ridley, R. M. Gladstone, W. Greuell, E. Hanna, A. J. Payne, and I. Rutt, 2007: Impact of model physics on estimating the surface mass balance of the Greenland Ice Sheet. Geophys. Res. Lett., 34, L17501, doi:10.1029/2007GL030700.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate date. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Bugnion, V., and P. H. Stone, 2002: Snowpack model estimates of the mass balance of the Greenland Ice Sheet and its changes over the twenty first century. Climate Dyn., 20, 87106.

    • Search Google Scholar
    • Export Citation
  • Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith, 2010: A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293.

    • Search Google Scholar
    • Export Citation
  • Calanca, P., H. Gilgen, S. Ekholm, and A. Ohmura, 2000: Gridded temperature and accumulation distributions for Greenland for use in cryospheric models. Ann. Glaciol., 31, 118120.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., 2006: How fast are the ice sheets melting? Science, 314, 12501252.

  • Cazenave, A., K. Dominh, S. Guinehut, E. Berthier, W. Llovel, G. Ramillien, M. Ablain, and G. Larnicol, 2009: Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Change, 65, 8388.

    • Search Google Scholar
    • Export Citation
  • Charbit, S., D. Paillard, and G. Ramstein, 2008: Amount of CO2 emissions irreversibly leading to the total melting of Greenland. Geophys. Res. Lett., 35, L12503, doi:10.1029/2008GL033472.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, and B. D. Tapley, 2006: Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science, 313, 19581960.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., J. M. Gregory, P. Huybrechts, M. Kuhn, K. Lambeck, M. T. Nhuan, D. Qin, and P. L. Woodworth, 2001: Changes in sea level. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 639–693.

    • Search Google Scholar
    • Export Citation
  • Ekholm, S., 1996: A full coverage, high resolution topographic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res., 101 (B10), 21 96121 972.

    • Search Google Scholar
    • Export Citation
  • Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland Ice Sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., 2007: Reconstruction of the 1979–2006 Greenland Ice Sheet surface mass balance using the regional climate model MAR. Cryosphere, 1, 2140.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., E. Hanna, H. Gallée, P. Huybrechts, and M. Erpicum, 2008: Estimation of the Greenland Ice Sheet surface mass balance for the 20th and 21st centuries. Cryosphere, 2, 117129.

    • Search Google Scholar
    • Export Citation
  • Franco, B., X. Fettweis, M. Erpicum, and S. Nicolay, 2010: Present and future climates of the Greenland Ice Sheet according to the IPCC AR4 models. Climate Dyn., 36, 18971918, doi:10.1007/s00382-010-0779-1.

    • Search Google Scholar
    • Export Citation
  • Glover, R. W., 1999: Influence of spatial resolution and treatment of orography on GCM estimates of the surface mass balance of the Greenland Ice Sheet. J. Climate, 12, 551563.

    • Search Google Scholar
    • Export Citation
  • Goelzer, H., P. Huybrechts, M. F. Loutre, H. Goosse, T. Fichefet, and A. Mouchet, 2011: Impact of Greenland and Antarctic Ice Sheet interactions on climate sensitivity. Climate Dyn., 37, 10051018, doi:10.1007/s00382-010-0885-0.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., S. Drijfhout, W. Hazeleger, R. van de Wal, R. Bintanja, and M. Helsen, 2011: Greenland’s contribution to global sea-level rise by the end of the 21st century. Climate Dyn., 37, 14271442, doi:10.1007/s00382-010-0918-8.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. Huybrechts, 2006: Ice-sheet contributions to future sea-level change. Philos. Trans. Roy. Soc. London, 364, 17091731.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Greve, R., F. Saito, and A. Abe-Ouchi, 2011: Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland Ice Sheet. Ann. Glaciol., 52, 2330.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21, 331341.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232.

  • Howat, I. M., I. Joughin, and T. A. Scambos, 2007: Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 15591561.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, and J. Yin, 2009: Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys. Res. Lett., 36, L10707, doi:10.1029/2009GL037998.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., and J. de Wolde, 1999: The dynamic response of the Greenland and Antarctic Ice Sheets to multiple-century climatic warming. J. Climate, 12, 21692188.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., J. Gregory, I. Janssens, and M. Wild, 2004: Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global Planet. Change, 42, 83105.

    • Search Google Scholar
    • Export Citation
  • Joughin, I., S. B. Das, M. A. King, B. E. Smith, I. M. Howat, and T. Moon, 2008: Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320, 781783.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Khan, S. A., J. Wahr, M. Bevis, I. Velicogna, and E. Kendrick, 2010: Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett., 37, L06501, doi:10.1029/2010GL042460.

    • Search Google Scholar
    • Export Citation
  • Kiilsholm, S., J. H. Christensen, K. Dethloff, and A. Rinke, 2003: Net accumulation of the Greenland Ice Sheet: High resolution modeling of climate changes. Geophys. Res. Lett., 30, 1485, doi:10.1029/2002GL015742.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., G. A. Meehl, M. R. Allen, and D. A. Stainforth, 2006: Constraining climate sensitivity from the seasonal cycle in surface temperature. J. Climate, 19, 42244233.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1979: A CO2-climate sensitivity study with a mathematical model of the global climate. Nature, 282, 491493.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007a: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007b: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, and K. Steffen, 2009: Record 2007 Greenland Ice Sheet surface melt extent and runoff. Eos, Trans. Amer. Geophys. Union, 90, doi:10.1029/2009EO020002.

    • Search Google Scholar
    • Export Citation
  • Mimura, N., L. Nurse, R. F. McLean, J. Agard, L. Briguglio, P. Lefale, R. Payet, and G. Sem, 2007: Small islands. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 687–716.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. J. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on costal zones. Science, 328, 15171520.

  • Nicholls, R. J., P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F. McLean, S. Ragoonaden, and C. Woodroffe, 2007: Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 315–356.

    • Search Google Scholar
    • Export Citation
  • Nick, F. M., A. Vieli, I. M. Howat, and I. Joughin, 2009: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2, 110114.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 2001: Physical basis for the temperature-based melt-index method. J. Appl. Meteor., 40, 753761.

  • Ohmura, A., M. Wild, and L. Bengtsson, 1996: A possible change in mass balance of Greenland and Antarctic Ice Sheets in the coming century. J. Climate, 9, 21242135.

    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., R. J. Arthern, D. G. Vaughan, and L. A. Edwards, 2009: Extensive dynamic thinning on the margins of the Greenland and Antarctic Ice Sheets. Nature, 461, 971975.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Ridley, J. K., P. Huybrechts, J. M. Gregory, and J. A. Lowe, 2005: Elimination of the Greenland Ice Sheet in a high CO2 climate. J. Climate, 18, 34093427.

    • Search Google Scholar
    • Export Citation
  • Ridley, J. K., J. M. Gregory, P. Huybrechts, and J. Lowe, 2010: Thresholds for irreversible decline of the Greenland Ice Sheet. Climate Dyn., 35, 10491057.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. E. Box, E. Burgess, and E. Hanna, 2008: Mass balance of the Greenland Ice Sheet from 1958 to 2007. Geophys. Res. Lett., 35, L20502, doi:10.1029/2008GL035417.

    • Search Google Scholar
    • Export Citation
  • Robinson, A., R. Calov, and A. Ganopolski, 2010: An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change. Cryosphere, 4, 129144.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and D. Wingham, 2007: Recent sea-level contributions of the Antarctic and Greenland Ice Sheets. Science, 315, 15291532.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., A. Hubbard, P. Nienow, M. King, M. McMillan, and I. Joughin, 2009: Greenland Ice Sheet motion coupled with daily melting in late summer. Geophys. Res. Lett., 36, L01501, doi:10.1029/2008GL035758.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., S. Emori, N. Hanasaki, M. Abe, Y. Masutomi, K. Takahashi, and T. Nozawa, 2011: Observational constraints indicate risk of drying in the Amazon basin. Nature Commun., 2, 253, doi:10.1038/ncomms1252.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiel, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520.

    • Search Google Scholar
    • Export Citation
  • Suzuki, T., and Coauthors, 2005: Projection of future sea level and its variability in a high-resolution climate model: Ocean processes and Greenland and Antarctic ice-melt contributions. Geophys. Res. Lett., 32, L19706, doi:10.1029/2005GL023677.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., P. Braconnot, P. Delecluse, E. Guilyardi, and O. Marti, 2007: Quantifying the AMOC feedbacks during a 2xCO2 stabilization experiment with land-ice melting. Climate Dyn., 29, 521534.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., X. Fettweis, M. R. van den Broeke, R. S. W. van del Wal, C. J. P. P. Smeets, W. J. van de Berg, M. C. Serreze, and J. E. Box, 2011: The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett., 6, 014005, doi:10.1088/1748-9326/6/1/014005.

    • Search Google Scholar
    • Export Citation
  • Thompson, S. L., and D. Pollard, 1997: Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. J. Climate, 10, 871900.

    • Search Google Scholar
    • Export Citation
  • Tsushima, Y., A. Abe-Ouchi, and S. Manabe, 2005: Radiative damping of annual variation in global mean surface temperature: Comparison between observed and simulated feedback. Climate Dyn., 24, 591597.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • van de Wal, R. S. W., 1996: Mass-balance modelling of the Greenland Ice Sheet: A comparison of an energy-balance model and a degree-day model. Ann. Glaciol., 23, 3645.

    • Search Google Scholar
    • Export Citation
  • van de Wal, R. S. W., M. Wild, and J. de Wolde, 2001: Short-term volume changes of the Greenland Ice Sheet in response to CO2 conditions. Tellus, 53B, 94102.

    • Search Google Scholar
    • Export Citation
  • van de Wal, R. S. W., W. Boot, M. R. van den Broeke, C. J. P. P. Smeets, C. H. Reijmer, J. Donker, and J. Oerlemans, 2008: Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321, 111113.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., and Coauthors, 2009: Partitioning recent Greenland mass loss. Science, 326, 984986.

  • van der Veen, C. J., 2002: Polar ice sheets and global sea level: How well can we predict the future? Global Planet. Change, 32, 165194.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic Ice Sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503, doi:10.1029/2009GL040222.

    • Search Google Scholar
    • Export Citation
  • Vizcáino, M., U. Mikolajewicz, M. Gröger, E. Maier-Reimer, G. Schurgers, and A. M. E. Winguth, 2008: Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex earth system model. Climate Dyn., 31, 665690.

    • Search Google Scholar
    • Export Citation
  • Vizcáino, M., U. Mikolajewicz, J. Jungclaus, and G. Schurgers, 2010: Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Climate Dyn., 34, 301324.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wild, M., and A. Ohumra, 2000: Change in mass balance of polar ice sheets and sea level from high-resolution GCM simulations of greenhouse warming. Ann. Glaciol., 30, 197203.

    • Search Google Scholar
    • Export Citation
  • Wild, M., P. Calanca, S. C. Scherrer, and A. Ohmura, 2003: Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. J. Geophys. Res., 108, 4165, doi:10.1029/2002JD002451.

    • Search Google Scholar
    • Export Citation
  • Wouters, B., D. Chambers, and E. J. O. Schrama, 2008: GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35, L20501, doi:10.1029/2008GL034816.

    • Search Google Scholar
    • Export Citation
  • Yokohata, T., and Coauthors, 2008: Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art climate models. Tellus, 60A, 946961.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., T. Yokohata, and A. Abe-Ouchi, 2009: A comparison of climate feedback strength between CO2 doubling and LGM experiments. J. Climate, 22, 33743395.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland Ice-Sheet flow. Science, 297, 218222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 587 403 91
PDF Downloads 100 35 8