Does Model Parameter Error Cause a Significant “Spring Predictability Barrier” for El Niño Events in the Zebiak–Cane Model?

Yanshan Yu Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Yanshan Yu in
Current site
Google Scholar
PubMed
Close
,
Mu Mu Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Mu Mu in
Current site
Google Scholar
PubMed
Close
, and
Wansuo Duan LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wansuo Duan in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Within the framework of the Zebiak–Cane model, the approach of conditional nonlinear optimal perturbation (CNOP) is used to study the effect of model parameter errors on El Niño–Southern Oscillation (ENSO) predictability. The optimal model parameter errors are obtained within a reasonable error bound (i.e., CNOP-P errors), which have the largest effect on the results of El Niño predictions. The resultant prediction errors were investigated in depth. The CNOP-P errors do not cause a noticeable prediction error of the sea surface temperature anomaly averaged over the Niño-3 region and do not show an obvious season-dependent evolution of the prediction errors. Consequently, the CNOP-P errors do not cause a significant spring predictability barrier (SPB) for El Niño events. In contrast, the initial errors that have the largest effect on the results of the predictions (i.e., the CNOP-I errors) show a season-dependent evolution, with the largest error increase in spring, and also cause a large prediction error, thereby generating a significant SPB. The initial errors play a more important role than the parameter errors in generating a significant SPB for El Niño events. To further validate this result, the authors investigated the situation in which CNOP-I and CNOP-P errors are simultaneously superimposed in the model, which may be a more credible approach because the initial errors and model parameter errors coexist under realistic predictions. The combined mode of CNOP-I and CNOP-P errors shows a similar season-dependent evolution to that of CNOP-I errors and yields a large prediction error, thereby inducing a significant SPB. The inference, therefore, is that initial errors play a more important role than model parameter errors in generating a significant SPB for El Niño predictions of the Zebiak–Cane model. This result helps to clarify the roles of the initial error and parameter error in the development of an SPB, and highlights the role of initial errors, which demonstrates that the SPB could be markedly reduced by improving the initial conditions. The results provide a theoretical basis for improving data assimilation in ENSO predictions.

Corresponding author address: Wansuo Duan, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: duanws@lasg.iap.ac.cn

Abstract

Within the framework of the Zebiak–Cane model, the approach of conditional nonlinear optimal perturbation (CNOP) is used to study the effect of model parameter errors on El Niño–Southern Oscillation (ENSO) predictability. The optimal model parameter errors are obtained within a reasonable error bound (i.e., CNOP-P errors), which have the largest effect on the results of El Niño predictions. The resultant prediction errors were investigated in depth. The CNOP-P errors do not cause a noticeable prediction error of the sea surface temperature anomaly averaged over the Niño-3 region and do not show an obvious season-dependent evolution of the prediction errors. Consequently, the CNOP-P errors do not cause a significant spring predictability barrier (SPB) for El Niño events. In contrast, the initial errors that have the largest effect on the results of the predictions (i.e., the CNOP-I errors) show a season-dependent evolution, with the largest error increase in spring, and also cause a large prediction error, thereby generating a significant SPB. The initial errors play a more important role than the parameter errors in generating a significant SPB for El Niño events. To further validate this result, the authors investigated the situation in which CNOP-I and CNOP-P errors are simultaneously superimposed in the model, which may be a more credible approach because the initial errors and model parameter errors coexist under realistic predictions. The combined mode of CNOP-I and CNOP-P errors shows a similar season-dependent evolution to that of CNOP-I errors and yields a large prediction error, thereby inducing a significant SPB. The inference, therefore, is that initial errors play a more important role than model parameter errors in generating a significant SPB for El Niño predictions of the Zebiak–Cane model. This result helps to clarify the roles of the initial error and parameter error in the development of an SPB, and highlights the role of initial errors, which demonstrates that the SPB could be markedly reduced by improving the initial conditions. The results provide a theoretical basis for improving data assimilation in ENSO predictions.

Corresponding author address: Wansuo Duan, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: duanws@lasg.iap.ac.cn
Save
  • An, S. I., and B. Wang, 2001: Mechanisms of locking the El Niño and La Niña mature phases to boreal winter. J. Climate, 14, 21642176.

    • Search Google Scholar
    • Export Citation
  • Birgin, E. G., J. M. Martínez, and M. Raydan, 2000: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim., 10, 11961211.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10, 14731486.

    • Search Google Scholar
    • Export Citation
  • Blumenthal, M. B., 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4, 766784.

  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 16991702.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2000: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño. Atmospheric and Oceanographic Sciences Library, Vol. 22, Kluwer Academic Publishers, 451 pp.

    • Search Google Scholar
    • Export Citation
  • Duan, W., and M. Mu, 2006: Investigating decadal variability of El Niño–Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res., 111, C07015, doi:10.1029/2005JC003458.

    • Search Google Scholar
    • Export Citation
  • Duan, W., and R. Zhang, 2010: Is model parameter error related to a significant spring predictability barrier for El Niño events? Result from a theoretical model. Adv. Atmos. Sci., 27, 10031013.

    • Search Google Scholar
    • Export Citation
  • Duan, W., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbations as the optimal precursors for El Niño–Southern Oscillation events. J. Geophys. Res., 109, D23105, doi:10.1029/2004JD004756.

    • Search Google Scholar
    • Export Citation
  • Duan, W., H. Xu, and M. Mu, 2008: Decisive role of nonlinear temperature advection in El Niño and La Niña amplitude asymmetry. J. Geophys. Res., 113, C01014, doi:10.1029/2006JC003974.

    • Search Google Scholar
    • Export Citation
  • Duan, W., X. Liu, K. Zhu, and M. Mu, 2009: Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res., 114, C04022, doi:10.1029/2008JC004925.

    • Search Google Scholar
    • Export Citation
  • Flugel, M., and P. Chang, 1998: Does the predictability of ENSO depend on the seasonal cycle? J. Atmos. Sci., 55, 32303243.

  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295.

    • Search Google Scholar
    • Export Citation
  • Hao, Z., and M. Ghil, 1994: Data assimilation in a simple tropical ocean model with wind stress errors. J. Phys. Oceanogr., 24, 21112128.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A., A. Kaplan, and M. Cane, 2006: Predictability loss in an intermediate ENSO model due to initial error and atmosphere noise. J. Climate, 19, 35723588.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10, 16901704.

  • Kirtman, B. P., J. Shukla, M. Balmaseda, N. Graham, C. Penland, Y. Xue, and S. Zebiak, Eds., 2002: Current status of ENSO forecast skill: A report to the CLIVAR Working Group on seasonal to interannual prediction. WCRP Informal Rep. 23/01, ICPO Publ. 56, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., 1991: A simple model of the atmospheric response to ENSO sea surface temperature anomalies. J. Atmos. Sci., 48, 318.

  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54, 753767.

    • Search Google Scholar
    • Export Citation
  • Latif, M., A. Sterl, E. Maier-Reimer, and M. M. Junge, 1993: Structure and predictability of the El Niño/Southern Oscillation phenomenon in a coupled ocean–atmosphere general circulation model. J. Climate, 6, 700708.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14 37514 393.

  • Lau, K. M., and S. Yang, 1996: The Asian monsoon and predictability of the tropical ocean-atmosphere system. Quart. J. Roy. Meteor. Soc., 122, 945957.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110.

    • Search Google Scholar
    • Export Citation
  • Liu, D. C., and J. Nocedal, 1989: On the limited memory method for large scale optimization. Math. Programming, 45B, 503528.

  • Liu, Z. Y., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15, 10881098.

  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321333.

  • Lu, J., and W. W. Hsieh, 1998: On determining initial conditions and parameters in a simple coupled atmosphere-ocean model by adjoint data assimilation. Tellus, 50A, 534544.

    • Search Google Scholar
    • Export Citation
  • Luo, J. J., S. Masson, S. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493.

    • Search Google Scholar
    • Export Citation
  • MacMynowski, D. G., and E. Tziperman, 2008: Factors affecting ENSO’s period. J. Atmos. Sci., 65, 15701586.

  • Marshall, A. G., O. Alves, and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Niño. J. Atmos. Sci., 66, 966983.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and D. L. T. Anderson, 1991: An overview of coupled models of El Niño and the Southern Oscillation. J. Geophys. Res., 96, 31253150.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi:10.1029/2003GL016872.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745.

  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122, 14051446.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12, 11991220.

  • Mu, M., and W. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chin. Sci. Bull., 48, 10451047.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, and J. Wan, 2002: The predictability problems in numerical weather and climate prediction. Adv. Atmos. Sci., 19, 191204.

    • Search Google Scholar
    • Export Citation
  • Mu, M., L. Sun, and D. A. Henk, 2004: The sensitivity and stability of the ocean’s thermocline circulation to finite amplitude freshwater perturbations. J. Phys. Oceanogr., 34, 23052315.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, and B. Wang, 2007a: Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, doi:10.1029/2005JD006981.

    • Search Google Scholar
    • Export Citation
  • Mu, M., H. Xu, and W. Duan, 2007b: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett., 34, L03709, doi:10.1029/2006GL027412.

    • Search Google Scholar
    • Export Citation
  • Mu, M., F. Zhou, and H. Wang, 2009: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 16231639.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Processes Geophys., 17, 211220.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1990: A hybrid coupled general circulation model for El Niño studies. J. Atmos. Sci., 47, 674693.

  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 10671076.

    • Search Google Scholar
    • Export Citation
  • Powell, M. J. D., 1982: VMCWD: A Fortran subroutine for constrained optimization. DAMTP Rep. 1982/NA4, 13 pp.

  • Sun, L., M. Mu, D.-J. Sun, and X.-Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110, C07025, doi:10.1029/2005JC002897.

    • Search Google Scholar
    • Export Citation
  • Syu, H.-H., and J. D. Neelin, 2000: ENSO in a hybrid coupled model. Part I: Sensitivity to physical parameterizations. Climate Dyn., 16, 1934.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., and B. Yu, 2008: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106, doi:10.1029/2007JD009230.

  • Terwisscha van Scheltinga, A. D., and H. A. Dijkstra, 2008: Conditional nonlinear optimal perturbations of the double-gyre ocean circulation. Nonlinear Processes Geophys., 15, 727734.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., 1998: Initial conditions for optimal growth in a coupled ocean–atmosphere model of ENSO. J. Atmos. Sci., 55, 537557.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., M. A. Balmaseda, L. Ferranti, T. N. Stockdale, and D. L. T. Anderson, 2005: Evaluation of atmospheric fields from the ECMWF seasonal forecasts over a 15-year period. J. Climate, 18, 32503269.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fang, 1996: Chaotic oscillation of tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci., 53, 27862802.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and J. Picaut, 2004: Understanding ENSO physics—A review. Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 21–48.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926.

  • Williams, P. D., 2005: Modelling the climate change: The role of unresolved process. Philos. Trans. Roy. Soc. London, 363, 29312946.

  • Wu, D. H., D. L. T. Anderson, and M. K. Davey, 1993: ENSO variability and external impacts. J. Climate, 6, 17031717.

  • Wu, X., and M. Mu, 2009: Impact of horizontal diffusion on the nonlinear stability of thermohaline circulation in a modified box model. J. Phys. Oceanogr., 39, 798805.

    • Search Google Scholar
    • Export Citation
  • Xu, H., and W. Duan, 2008: What kind of initial errors cause the severest prediction uncertainty of El Niño in Zebiak-Cane model. Adv. Atmos. Sci., 25, 577584.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, and S. E. Zebaik, 1997: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev., 125, 20432056.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, doi:10.1029/2006JD007654.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., W. Duan, H. Xu, and M. Mu, 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak–Cane model. Quart. J. Roy. Meteor. Soc., 135, 21462160.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., A. M. Moore, and R. Kleeman, 2004: Influence of stochastic forcing on ENSO prediction. J. Geophys. Res., 109, C11007, doi:10.1029/2004JC002406.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

  • Zhang, L., M. Flügel, and P. Chang, 2003: Testing the stochastic mechanism for low-frequency variations in ENSO predictability. Geophys. Res. Lett., 30, 1630, doi:10.1029/2003GL017505.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 696 315 52
PDF Downloads 237 67 7