Improved Madden–Julian Oscillations with Improved Physics: The Impact of Modified Convection Parameterizations

Lei Zhou Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, and Key Laboratory of Ocean Dynamic Processes and Satellite Oceanography, SOA, Hangzhou, China

Search for other papers by Lei Zhou in
Current site
Google Scholar
PubMed
Close
,
Richard B. Neale National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard B. Neale in
Current site
Google Scholar
PubMed
Close
,
Markus Jochum National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Markus Jochum in
Current site
Google Scholar
PubMed
Close
, and
Raghu Murtugudde Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Raghu Murtugudde in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two modifications are made to the deep convection parameterization in the NCAR Community Climate System Model, version 3 (CCSM3): a dilute plume approximation and an implementation of the convective momentum transport (CMT). These changes lead to significant improvement in the simulated Madden–Julian oscillations (MJOs). With the dilute plume approximation, temperature and convective heating perturbations become more positively correlated. Consequently, more available potential energy is generated and the intraseasonal variability (ISV) becomes stronger. The organization of ISV is also improved, which is manifest in coherent structures between different MJO phases and an improved simulation of the eastward propagation of MJOs with a reasonable eastward speed. The improved propagation can be attributed to a better simulation of the low-level zonal winds due to the inclusion of CMT. The authors posit that the large-scale zonal winds are akin to a selective conveyor belt that facilitates the organization of ISVs into highly coherent structures, which are important features of observed MJOs. The conclusions are supported by two supplementary experiments, which include the dilute plume approximation and CMT separately.

Corresponding author address: Lei Zhou, 301d Oceanography, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. E-mail: lzhou@ldeo.columbia.edu

Abstract

Two modifications are made to the deep convection parameterization in the NCAR Community Climate System Model, version 3 (CCSM3): a dilute plume approximation and an implementation of the convective momentum transport (CMT). These changes lead to significant improvement in the simulated Madden–Julian oscillations (MJOs). With the dilute plume approximation, temperature and convective heating perturbations become more positively correlated. Consequently, more available potential energy is generated and the intraseasonal variability (ISV) becomes stronger. The organization of ISV is also improved, which is manifest in coherent structures between different MJO phases and an improved simulation of the eastward propagation of MJOs with a reasonable eastward speed. The improved propagation can be attributed to a better simulation of the low-level zonal winds due to the inclusion of CMT. The authors posit that the large-scale zonal winds are akin to a selective conveyor belt that facilitates the organization of ISVs into highly coherent structures, which are important features of observed MJOs. The conclusions are supported by two supplementary experiments, which include the dilute plume approximation and CMT separately.

Corresponding author address: Lei Zhou, 301d Oceanography, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. E-mail: lzhou@ldeo.columbia.edu
Save
  • Agudelo, P. A., C. D. Hoyos, P. J. Webster, and J. A. Curry, 2009: Application of a serial extended forecast experiment using the ECMWF model to interpret the predictive skill of tropical intraseasonal variability. Climate Dyn., 32, 855872.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. P. Chaboureau, A. Beljaars, A. K. Betts, M. Kohler, M. Miller, and J. L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721.

  • Blade, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939.

  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15, 29072920.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2003: The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60, 451460.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., F. Guichard, J. L. Redelsperger, and J. P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection overland. Quart. J. Roy. Meteor. Soc., 130, 31053117.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and L. T. Deng, 1998: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulations. J. Atmos. Sci., 55, 690709.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and B. D. Chen, 2001: The role of surface friction in tropical intraseasonal oscillation. Mon. Wea. Rev., 129, 896904.

  • CLIVAR Madden–Julian Oscillation Working Group, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030.

  • Collins, W. D., and Coauthors, 2006a: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden-Julian oscillation. J. Geophys. Res., 99, 80738083.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1995: Low-frequency oscillations in radiative convective systems. Part II: An idealized model. J. Atmos. Sci., 52, 478490.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345364.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2009: A homogeneous stochastic model of the Madden–Julian oscillation. J. Climate, 22, 32703288.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Kershaw, R., and D. Gregory, 1997: Parametrization of momentum transport by convection. 1. Theory and cloud modelling results. Quart. J. Roy. Meteor. Soc., 123, 11331151.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Kuo, H.-L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., M. H. Zhang, and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62, 21722188.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., M. I. Lee, D. Kim, I. S. Kang, and D. M. W. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883909.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in zonal wind in tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Madden, R. A., and P. R. Julian, 2005: Historical perspective. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 1–16.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2002: An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15, 964982.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001a: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 20152034.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001b: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93, 769798.

    • Search Google Scholar
    • Export Citation
  • Moskowitz, B. M., and C. S. Bretherton, 2000: An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57, 21882206.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 29582977.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer, 260 pp.

  • Ray, P., and C. D. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528.

    • Search Google Scholar
    • Export Citation
  • Ray, P., C. D. Zhang, M. W. Moncrieff, J. Dudhia, J. M. Caron, L. R. Leung, and C. Bruyere, 2011: Role of the atmospheric mean state on the initiation of the MJO in a tropical channel model. Climate Dyn., 36, 161184.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718.

  • Raymond, D. J., and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49, 19681983.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 23442367.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and P. Sura, 2007: Multiscale impacts of variable heating in climate. J. Climate, 20, 56775695.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., D. P. Rowell, K. R. Sperber, and E. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Nino. Quart. J. Roy. Meteor. Soc., 125, 583609.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and D. E. Waliser, 2008: New approaches to understanding, simulating, and forecasting the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 89, 19171920.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., J. M. Slingo, P. M. Inness, and W. K. M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13, 769795.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25, 117140.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., and K. M. Lau, 1989: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46, 3756.

    • Search Google Scholar
    • Export Citation
  • Tian, B. J., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tian, B. J., D. E. Waliser, E. J. Fetzer, and Y. L. Yung, 2010: Vertical moist thermodynamic structure of the Madden–Julian oscillation in atmospheric infrared sounder retrievals: An update and a comparison to ECMWF Interim Re-Analysis. Mon. Wea. Rev., 138, 45764582.

    • Search Google Scholar
    • Export Citation
  • Tung, W. W., and M. Yanai, 2002: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J. H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 307–360.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies—1975–1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 14231457.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA-COARE: The coupled ocean–atmosphere response experiment. Bull. Amer. Meteor. Soc., 73, 13771416.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127, 887907.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C. D., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180.

  • Zhang, C. D., M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Q. Wang, 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Q. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18, 40464064.

    • Search Google Scholar
    • Export Citation
  • Zhu, H. Y., H. Hendon, and C. Jakob, 2009: Convection in a parameterized and superparameterized model and its role in the representation of the MJO. J. Atmos. Sci., 66, 27962811.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 335 159 78
PDF Downloads 162 72 6