Trends in Daily Solar Radiation and Precipitation Coefficients of Variation since 1984

David Medvigy Department of Geosciences, and Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by David Medvigy in
Current site
Google Scholar
PubMed
Close
and
Claudie Beaulieu Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Claudie Beaulieu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study investigates the possibility of changes in daily scale solar radiation and precipitation variability. Coefficients of variation (CVs) were computed for the daily downward surface solar radiation product from the International Satellite Cloud Climatology Project and the daily precipitation product from the Global Precipitation Climatology Project. Regression analysis was used to identify trends in CVs. Statistically significant changes in solar radiation variability were found for 35% of the globe, and particularly large increases were found for tropical Africa and the Maritime Continent. These increases in solar radiation variability were correlated with increases in precipitation variability and increases in deep convective cloud amount. The changes in high-frequency climate variability identified here have consequences for any process depending nonlinearly on climate, including solar energy production and terrestrial ecosystem photosynthesis. To assess these consequences, additional work is needed to understand how high-frequency climate variability will change in the coming decades.

Corresponding author address: David Medvigy, Department of Geosciences, Princeton University, 418B Guyot Hall, Princeton, NJ 08544. E-mail: dmedvigy@princeton.edu

Abstract

This study investigates the possibility of changes in daily scale solar radiation and precipitation variability. Coefficients of variation (CVs) were computed for the daily downward surface solar radiation product from the International Satellite Cloud Climatology Project and the daily precipitation product from the Global Precipitation Climatology Project. Regression analysis was used to identify trends in CVs. Statistically significant changes in solar radiation variability were found for 35% of the globe, and particularly large increases were found for tropical Africa and the Maritime Continent. These increases in solar radiation variability were correlated with increases in precipitation variability and increases in deep convective cloud amount. The changes in high-frequency climate variability identified here have consequences for any process depending nonlinearly on climate, including solar energy production and terrestrial ecosystem photosynthesis. To assess these consequences, additional work is needed to understand how high-frequency climate variability will change in the coming decades.

Corresponding author address: David Medvigy, Department of Geosciences, Princeton University, 418B Guyot Hall, Princeton, NJ 08544. E-mail: dmedvigy@princeton.edu
Save
  • Adler, R. F., C. Kidd, G. Petty, M. Maroissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 1377–1396.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167.

    • Search Google Scholar
    • Export Citation
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716–723.

  • Boettcher, S. W., and Coauthors, 2010: Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science, 327, 185–187.

    • Search Google Scholar
    • Export Citation
  • Bolvin, D. T., R. F. Adler, G. J. Huffman, E. J. Nelkin, and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J. Appl. Meteor. Climatol., 48, 1843–1857.

    • Search Google Scholar
    • Export Citation
  • Brest, C. L., W. B. Rossow, and M. D. Roiter, 1997: Update of radiance calibrations for ISCCP. J. Atmos. Oceanic Technol., 14, 1091–1109.

    • Search Google Scholar
    • Export Citation
  • Breusch, T. S., and A. R. Pagan, 1979: A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47, 1287–1294.

    • Search Google Scholar
    • Export Citation
  • Burnham, K. P., and D. R. Anderson, 2004: Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33, 261–304.

    • Search Google Scholar
    • Export Citation
  • Chiessi, C. M., S. Mulitza, J. Pätzold, G. Wefer, and J. A. Marengo, 2009: Possible impact of the Atlantic multidecadal oscillation on the South American summer monsoon. Geophys. Res. Lett., 36, L21707, doi:10.1029/2009GL039914.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M.-S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Desormeaux, Y., W. B. Rossow, C. L. Brest, and G. G. Campbell, 1993: Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project. J. Atmos. Oceanic Technol., 10, 304–325.

    • Search Google Scholar
    • Export Citation
  • Dupigny-Giroux, L.-A., C. F. Blackwell, S. Bristow, and G. M. Olson, 2003: Vegetation response to ice disturbance and consecutive moisture extremes. Int. J. Remote Sens., 24, 2105–2129.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1445.

    • Search Google Scholar
    • Export Citation
  • Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, 2003: Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035–2038.

    • Search Google Scholar
    • Export Citation
  • Gupta, B., P. K. Shishodia, A. Kapoor, R. M. Mehra, T. Soga, T. Jimbo, and M. Umeno, 2002: Effect of illumination intensity and temperature on the I–V characteristics of n-C/p-Si heterojunction. Sol. Energy Mater. Sol. Cells, 73, 261–267.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., P. W. Stackhouse Jr., S. J. Cox, J. C. Mikovitz, and T. Zhang, 2006: Surface radiation budget project completes 22-year data set. GEWEX News, No. 16, International GEWEX Project Office, Southampton, United Kingdom, 12–13.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., W. B. Rossow, and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14, 11–28.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699.

  • Huffman, G., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5–20.

    • Search Google Scholar
    • Export Citation
  • Ianetz, A., V. Lyubansky, I. Setter, E. G. Evseev, and A. I. Kudish, 2000: A method for characterization and inter-comparison of sites with regard to solar energy utilization by statistical analysis of their solar radiation data as performed for three sites in the Israel Negev region. Sol. Energy, 69, 283–293.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503.

    • Search Google Scholar
    • Export Citation
  • Koenraadt, C. J. M., and L. C. Harrington, 2008: Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). J. Med. Entomol., 45, 28–35.

    • Search Google Scholar
    • Export Citation
  • Lee, X., H.-J. Wu, J. Sigler, C. Oishi, and T. Siccama, 2004: Rapid and transient response of soil respiration to rain. Global Change Biol., 10, 1017–1026.

    • Search Google Scholar
    • Export Citation
  • Ljung, G. M., and G. E. P. Box, 1978: On a measure of lack of fit in time series models. Biometrika, 65, 297–303.

  • Marani, M., G. Grossi, M. Wallace, F. Napolitano, and D. Entekhabi, 1997: Forcing, intermittency, and land surface hydrological partitioning. Water Resour. Res., 33, 167–175.

    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., and D. Entekhabi, 2001: Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface. Hydrol. Earth Syst. Sci., 5, 27–38.

    • Search Google Scholar
    • Export Citation
  • Matiasovsky, P., 1996: Daily characteristics of air temperature and solar irradiation-input data for modelling of thermal behaviour of buildings. Atmos. Environ., 30, 537–542.

    • Search Google Scholar
    • Export Citation
  • McPhee, J., and S. A. Margulis, 2005: Validation and error characterization of the GPCP-1DD precipitation product over the contiguous United States. J. Hydrometeor., 6, 441–459.

    • Search Google Scholar
    • Export Citation
  • Medvigy, D., S. C. Wofsy, J. W. Munger, and P. R. Moorcroft, 2010: Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc. Natl. Acad. Sci. USA, 107, 8275–8280.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: The status of satellite-based rainfall estimation over land. Remote Sens. Environ., 51, 135–137.

  • Rahman, M. Y. A., M. M. Salleh, I. A. Talib, and M. Yahaya, 2007: Light intensity and temperature dependence on performance of a photoelectrochemical cells of ITO/TiO2/PVC-LiClO4/graphite. Ionics, 13, 241–244.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team, 2008: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 409 pp. [Available online at http://www.R-project.org.]

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2–20.

  • Royston, P., 1982: An extension of Shapiro and Wilk’s W test for normality to large samples. Appl. Stat., 31, 115–124.

  • Sinclair, T. R., C. E. Murphy Jr., and K. R. Knoerr, 1976: Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J. Appl. Ecol., 13, 813–829.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., E. Tromeur, W. B. Rossow, and C. S. Zerefos, 2010: Decadal changes in tropical convection suggest effects on stratospheric water vapor. Geophys. Res. Lett., 37, L14806, doi:10.1029/2010GL044092.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., A. Robock, and A. Basist, 2002: Diurnal and seasonal cycles of trends of surface air temperature. J. Geophys. Res., 107, 4641, doi:10.1029/2001JD002007.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Yang, T. Zhou, and B. Wang, 2008: Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 1771–1789.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and L. O. Mearns, 2002: The influence of the North Atlantic–Arctic Oscillation on the mean, variance, and extremes of temperature in the northeastern United States and Canada. J. Climate, 15, 3586–3600.

    • Search Google Scholar
    • Export Citation
  • Whitlock, C. H., and Coauthors, 1995: First global WCRP shortwave surface radiation budget dataset. Bull. Amer. Meteor. Soc., 76, 905–922.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5, 1207–1222.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1. Method and sensitivity to input data uncertainties. J. Geophys. Res., 100 (D1), 1149–1165.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, and P. W. Stackhouse Jr., 2007: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112, D01102, doi:10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., C. N. Long, W. B. Rossow, and E. G. Dutton, 2010: Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD. J. Geophys. Res., 115, D15105, doi:10.1029/2009JD012743.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1737 477 125
PDF Downloads 1131 181 7