Analysis of the Atlantic Meridional Mode Using Linear Inverse Modeling: Seasonality and Regional Influences

Daniel J. Vimont Department of Atmospheric and Oceanic Sciences, and Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Daniel J. Vimont in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Predictability and variability of the tropical Atlantic Meridional Mode (AMM) is investigated using linear inverse modeling (LIM). Analysis of the LIM using an “energy” norm identifies two optimal structures that experience some transient growth, one related to El Niño–Southern Oscillation (ENSO) and the other to the Atlantic multidecadal oscillation (AMO)/AMM patterns. Analysis of the LIM using an AMM-norm identifies an “AMM optimal” with similar structure to the second energy optima (OPT2). Both the AMM-optimal and OPT2 exhibit two bands of SST anomalies in the mid- to high-latitude Atlantic. The AMM-optimal also contains some elements of the first energy optimal (ENSO), indicating that the LIM captures the well-known relationship between ENSO and the AMM.

Seasonal correlations of LIM predictions with the observed AMM show enhanced AMM predictability during boreal spring and for long-lead (around 11–15 months) forecasts initialized around September. Regional LIMs were constructed to determine the influence of tropical Pacific and mid- to high-latitude Atlantic SST on the AMM. Analysis of the regional LIMs indicates that the tropical Pacific is responsible for the AMM predictability during boreal spring. Mid- to high-latitude SST anomalies contribute to boreal summer and fall AMM predictability, and are responsible for the enhanced predictability from September initial conditions. Analysis of the empirical normal modes of the full LIM confirms these physical relationships. Results indicate a potentially important role for mid- to high-latitude Atlantic SST anomalies in generating AMM (and tropical Atlantic SST) variations, though it is not clear whether those anomalies provide any societally useful predictive skill.

Corresponding author address: Daniel J. Vimont, Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: dvimont@wisc.edu

Abstract

Predictability and variability of the tropical Atlantic Meridional Mode (AMM) is investigated using linear inverse modeling (LIM). Analysis of the LIM using an “energy” norm identifies two optimal structures that experience some transient growth, one related to El Niño–Southern Oscillation (ENSO) and the other to the Atlantic multidecadal oscillation (AMO)/AMM patterns. Analysis of the LIM using an AMM-norm identifies an “AMM optimal” with similar structure to the second energy optima (OPT2). Both the AMM-optimal and OPT2 exhibit two bands of SST anomalies in the mid- to high-latitude Atlantic. The AMM-optimal also contains some elements of the first energy optimal (ENSO), indicating that the LIM captures the well-known relationship between ENSO and the AMM.

Seasonal correlations of LIM predictions with the observed AMM show enhanced AMM predictability during boreal spring and for long-lead (around 11–15 months) forecasts initialized around September. Regional LIMs were constructed to determine the influence of tropical Pacific and mid- to high-latitude Atlantic SST on the AMM. Analysis of the regional LIMs indicates that the tropical Pacific is responsible for the AMM predictability during boreal spring. Mid- to high-latitude SST anomalies contribute to boreal summer and fall AMM predictability, and are responsible for the enhanced predictability from September initial conditions. Analysis of the empirical normal modes of the full LIM confirms these physical relationships. Results indicate a potentially important role for mid- to high-latitude Atlantic SST anomalies in generating AMM (and tropical Atlantic SST) variations, though it is not clear whether those anomalies provide any societally useful predictive skill.

Corresponding author address: Daniel J. Vimont, Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: dvimont@wisc.edu
Save
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901.

    • Search Google Scholar
    • Export Citation
  • Andronova, N., and M. Schlesinger, 2000: Causes of global temperature changes during the 19th and 20th centuries. Geophys. Res. Lett., 27, 21372140.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 25402555.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516518.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, H. Li, C. Penland, and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperature. Geophys. Res. Lett., 25, 11931196.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496.

    • Search Google Scholar
    • Export Citation
  • Covey, D. L., and S. Hastenrath, 1978: The Pacific El Niño phenomenon and the Atlantic circulation. Mon. Wea. Rev., 106, 12801287.

  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea-surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100 (C8), 15 83515 847.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., 2004: Why is north tropical Atlantic SST variability stronger in boreal spring? J. Climate, 17, 30173025.

  • Czaja, A., P. V. der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290.

    • Search Google Scholar
    • Export Citation
  • Dahl, K. A., A. J. Broccoli, and R. J. Stouffer, 2005: Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Climate Dyn., 24, 325346.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18, 11171135.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño Southern Oscillation. J. Geophys. Res., 102 (C1), 929945.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., D. J. Vimont, A. K. Heidinger, J. P. Kossin, and R. Bennartz, 2009: The dominant role of aerosols in the evolution of tropical Atlantic Ocean temperature. Science, 324, 778781, doi:10.1126/science.1167404.

    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45, 163172.

  • Giannini, A., Y. Kushnir, and M. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. Chiang, M. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and S. Nigam, 2009: Analysis of Atlantic SST variability factoring interbasin links and the secular trend: Clarified structure of the Atlantic multidecadal oscillation. J. Climate, 22, 42284240.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Heller, 1977: Dynamics of climatic hazards in Northeast Brazil. Quart. J. Roy. Meteor. Soc., 103, 7792.

  • Hastenrath, S., and L. Greischar, 1993: Circulation mechanisms related to Northeast Brazil rainfall anomalies. J. Geophys. Res., 98 (D3), 50935102.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: Decadal predictability of the Atlantic Ocean in a coupled GCM: Forecast skill and optimal perturbations using linear inverse modeling. J. Climate, 22, 39603978.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., A. W. Robertson, and Y. Kushnir, 2005: Atlantic SST gradient and the influence of ENSO. Geophys. Res. Lett., 32, L20706, doi:10.1029/2005GL023944.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., A. W. Robertson, Y. Kushnir, and S. Peng, 2009: Hindcasts of tropical Atlantic SST gradient and South American precipitation: The influences of the ENSO forcing and the Atlantic preconditioning. J. Climate, 22, 24052421.

    • Search Google Scholar
    • Export Citation
  • Johnson, H., and D. Marshall, 2002: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 11211132.

    • Search Google Scholar
    • Export Citation
  • Johnson, H., and D. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34, 17021722.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827.

    • Search Google Scholar
    • Export Citation
  • Kerr, R., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841986.

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 1767.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and S. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci., 51, 38073822.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Saravanan, and P. Chang, 2010: Free and forced variability of the tropical Atlantic Ocean: Role of the wind–evaporation–sea surface temperature feedback. J. Climate, 23, 59585977.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res., 99 (D12), 25 81925 833.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, and J. D. Scott, 2011: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 18231841.

  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98, 534558.

  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024.

  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483496.

    • Search Google Scholar
    • Export Citation
  • Penland, C., M. Flugel, and P. Chang, 2000: Identification of dynamical regimes in an intermediate coupled ocean–atmosphere model. J. Climate, 13, 21052115.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., P. D. Sardeshmukh, and K. Pegion, 2010: Realism of local and remote feedbacks on tropical sea surface temperatures in climate models. J. Geophys. Res., 115, D21110, doi:10.1029/2010JD013927.

    • Search Google Scholar
    • Export Citation
  • Smirnov, D., and D. J. Vimont, 2012: Extratropical forcing of tropical Atlantic variability during boreal summer and fall. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., M. A. Balmaseda, and A. Vidard, 2006: Tropical Atlantic SST prediction with coupled ocean–atmosphere GCMs. J. Climate, 19, 60476061.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and P. Ioannou, 2002: Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32, 34273435.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Zanna, and C. Penland, 2008: Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J. Phys. Oceanogr., 38, 588604.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54, 251267.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2010: Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean state. J. Climate, 23, 57715789.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 26532667.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. Alexander, and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518534.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. International Geophysics Series, Vol. 59, 2nd ed. Academic Press, 627 pp.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1997: Unstable transition of the tropical climate to an equatorially asymmetric state in a coupled ocean–atmosphere model. Mon. Wea. Rev., 125, 667679.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470.

  • Xie, S.-P., and Y. Tanimoto, 1998: A pan-Atlantic decadal climate oscillation. Geophys. Res. Lett., 25, 21852188.

  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., and E. Tziperman, 2005: Nonnormal amplification of the thermohaline circulation. J. Phys. Oceanogr., 35, 15931605.

  • Zanna, L., P. Heimbach, A. M. Moore, and E. Tziperman, 2011: Optimal excitation of interannual Atlantic meridional overturning circulation variability. J. Climate, 24, 413427.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 725 187 6
PDF Downloads 491 112 4