Large Decadal Decline of the Arctic Multiyear Ice Cover

Josefino C. Comiso Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Josefino C. Comiso in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at −12.2% and −13.5% decade−1, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979–2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of −15.1% and −17.2% decade−1, respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8–9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.

Corresponding author address: Josefino C. Comiso, Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771. E-mail: josefino.c.comiso@nasa.gov

Abstract

The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and area remained strongly negative at −12.2% and −13.5% decade−1, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data during the winters of 1979–2011 was studied, and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of −15.1% and −17.2% decade−1, respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic ice cover means a reduction in the average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007, suggesting a strong role of second-year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8–9-yr cycle is apparent in the multiyear ice record, which could explain, in part, the slight recovery in the last 3 yr.

Corresponding author address: Josefino C. Comiso, Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771. E-mail: josefino.c.comiso@nasa.gov
Save
  • Amstrup, S. C., G. M. Durner, I. Stirling, and T. L. McDonald, 2010: Climate change: The prospects for polar bears. Nature, 468, 955958.

    • Search Google Scholar
    • Export Citation
  • Asplin, M. G., J. V. Lukovich, and D. G. Barber, 2009: Atmospheric forcing of the Beaufort Sea ice gyre: Surface pressure climatology and sea ice motion. J. Geophys. Res., 114, C00A06, doi:10.1029/2008JC005127.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2002: A rapidly declining Arctic perennial ice cover. Geophys. Res. Lett., 29, 1956, doi:10.1029/2002GL015650.

  • Comiso, J. C., 2003: Warming trends in the Arctic from clear sky satellite observations. J. Climate, 16, 34983510.

  • Comiso, J. C., 2006: Impacts of the variability of 2nd year ice types on the decline of the perennial ice cover. Ann. Glaciol., 44, 375382.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2010: Polar Oceans from Space. Springer, 507 pp.

  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and C. L. Parkinson, 2008: Arctic sea ice parameters from AMSR-E using two techniques, and comparisons with sea ice from SSM/I. J. Geophys. Res., 113, C02S05, doi:10.1029/2007JC004255.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Eppler, D., and Coauthors, 1992: Passive microwave signatures of sea ice. Microwave Remote Sensing of Sea Ice, F. Carsey, Ed., Amer. Geophys. Union, 47–71.

    • Search Google Scholar
    • Export Citation
  • Gloersen, P., W. Campbell, D. Cavalieri, J. C. Comiso, C. L. Parkinson, and H. J. Zwally, 1992: Arctic and Antarctic sea ice, 1978–1987: Satellite passive microwave observations and analysis. NASA Special Publication 511, 290 pp.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., 1992: Surface based passive microwave studies of multiyear ice. J. Geophys. Res., 97, 34853501.

  • Johannessen, O. M., E. V. Shalina, and M. W. Miles, 1999: Satellite evidence for an Arctic sea ice cover in transformation. Science, 286, 19371939.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2004: Annual cycles of multiyear sea ice coverage of the Arctic Ocean: 1999–2003. J. Geophys. Res., 109, C11004, doi:10.1029/2003JC002238.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2008: Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophys. Res. Lett., 35, L03504, doi:10.1029/2007GL032692.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern, 2009: Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22, 165176.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, and Y. Hu, 2004: Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 31, L09211, doi:10.1029/2004GL019858.

    • Search Google Scholar
    • Export Citation
  • Markus, T., J. C. Stroeve, and J. Miller, 2009: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114, C12024, doi:10.1029/2009JC005436.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, 2007: A younger, thinner Arctic ice cover: Increased potential for extensive sea-ice loss. Geophys. Res. Lett., 34, L24501, doi:10.1029/2007GL032043.

    • Search Google Scholar
    • Export Citation
  • Matzler, C., R. O. Ramseier, and E. Svendsen, 1984: Polarization effects in sea ice signatures. IEEE J. Oceanic Eng., 9, 333338.

  • Nghiem, S. V., I. G. Rigor, D. K. Perovich, P. Clemente-Colon, J. W. Weatherly, and G. Neumann, 2007: Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 34, L19504, doi:10.1029/2007GL031138.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., I. G. Rigor, M. G. McPhee, and J. M. Wallace, 2008: Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Res. Lett., 35, L24701, doi:10.1029/2008GL035672.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2005: The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32, L06701, doi:10.1029/2004GL021752.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999: Arctic sea ice extents, areas, and trends, 1978-1996. J. Geophys. Res., 104 (C9), 20 83720 856.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A. Y., and M. A. Johnson, 1997: Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res., 102, 12 49312 514.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663.

  • Rothrock, D. A., Y. Yu, and G. Maykut, 1999: Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26, 34693472.

  • Schweiger, A. J., J. Zhang, R. W. Lindsay, and M. Steele, 2008: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35, L10503, doi:10.1029/2008GL033463.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in the recent Arctic temperature amplification. Nature, 464, 13341337.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119.

  • Shibata, A., H. Murakami, and J. Comiso, 2010: Anomalous warming in the Arctic Ocean in the summer of 2007. J. Remote Sens. Soc. Japan, 30, 105113.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796.

  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, doi:10.1029/2007GL031651.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. C. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., J. Maslanik, M. C. Serreze, I. Rigor, W. Meier, and C. Fowler, 2011: Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Res. Lett., 38, L02502, doi:10.1029/2010GL045662.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2011: Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett., 38, L02707, doi:10.1029/2010GL045698.

    • Search Google Scholar
    • Export Citation
  • Tooma, S. G., R. A. Mennella, J. P. Hollinger, and R. D. Ketchum Jr., 1975: Comparison of sea-ice type identification between airborne dual-frequency passive microwave radiometry and standard laser/infrared techniques. J. Glaciol., 15, 225239.

    • Search Google Scholar
    • Export Citation
  • Vant, M. R., R. O. Ramseier, and V. Makios, 1978: The complex-dielectric constant of sea ice at frequencies in the range 0.1–40 GHz. J. Appl. Phys., 49, 12341280.

    • Search Google Scholar
    • Export Citation
  • Wadhams, P., and N. R. Davis, 2000: Further evidence of ice thinning in the Arctic Ocean. Geophys. Res. Lett., 27, 39733975.

  • Walsh, J. E., and H. J. Zwally, 1990: Multiyear sea ice in the Arctic: Model- and satellite-derived. J. Geophys. Res., 95, 11 61311 628.

    • Search Google Scholar
    • Export Citation
  • Weeks, W. F., and S. Ackley, 1986: The growth, structure and properties of sea ice. The Geophysics of Sea Ice, N. Untersteiner, Ed., Plenum, 9–164.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. G. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. Nature, 380, 699702.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys. Res. Lett., 35, L11505, doi:10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Atmospheric circulation signature in recent rapid Arctic climate system change. Geophys. Res. Lett., 35, L22701, doi:10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., and P. Gloersen, 2008: Arctic sea ice surviving the summer melt: Interannual variability and decreasing trend. J. Glacial., 54, 279296.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11067 2045 470
PDF Downloads 2757 546 64