Reproducibility by Climate Models of Cloud Radiative Forcing Associated with Tropical Convection

Hiroki Ichikawa Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Search for other papers by Hiroki Ichikawa in
Current site
Google Scholar
PubMed
Close
,
Hirohiko Masunaga Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan

Search for other papers by Hirohiko Masunaga in
Current site
Google Scholar
PubMed
Close
,
Yoko Tsushima Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Yoko Tsushima in
Current site
Google Scholar
PubMed
Close
, and
Hiroshi Kanzawa Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Search for other papers by Hiroshi Kanzawa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, cloud radiative forcing (CRF) associated with convective activity over tropical oceans is analyzed for monthly mean data from twentieth-century simulations of 18 climate models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) in comparison with observational and reanalysis data. The analysis is focused on the warm oceanic regions with sea surface temperatures (SSTs) above 27°C to exclude the regions with cold SSTs typically covered by low stratus clouds. CRF is evaluated for different regimes sorted by pressure-coordinated vertical motion at 500 hPa (ω500) as an index of large-scale circulation. The warm oceanic regions cover the regime of vertical motion ranging from strong ascent to weak descent. The most notable feature found in this study is a systematic underestimation by most models of the ratio of longwave cloud radiative forcing (LWCRF) to shortwave cloud radiative forcing (SWCRF) over the weak vertical motion regime defined as −10 < ω500 < 20 hPa day−1. The underestimation of the ratio corresponds to the underestimation of LWCRF and the overestimation of SWCRF. Clouds in models seem to be lower in the amount of high clouds but more reflective than those in the observations in this regime.

In the weak vertical motion regime, the lower free troposphere is dry. In the large-scale environment condition, the reproducibility of LWCRF is high in models adopting the scheme where the relative humidity–based suppression for deep convection occurrence is implemented. Models adopting the Zhang and McFarlane scheme show good performance without such a suppression mechanism.

Corresponding author address: Hiroki Ichikawa, Dept. of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. E-mail: ichikawa@hyarc.nagoya-u.ac.jp

Abstract

In this study, cloud radiative forcing (CRF) associated with convective activity over tropical oceans is analyzed for monthly mean data from twentieth-century simulations of 18 climate models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) in comparison with observational and reanalysis data. The analysis is focused on the warm oceanic regions with sea surface temperatures (SSTs) above 27°C to exclude the regions with cold SSTs typically covered by low stratus clouds. CRF is evaluated for different regimes sorted by pressure-coordinated vertical motion at 500 hPa (ω500) as an index of large-scale circulation. The warm oceanic regions cover the regime of vertical motion ranging from strong ascent to weak descent. The most notable feature found in this study is a systematic underestimation by most models of the ratio of longwave cloud radiative forcing (LWCRF) to shortwave cloud radiative forcing (SWCRF) over the weak vertical motion regime defined as −10 < ω500 < 20 hPa day−1. The underestimation of the ratio corresponds to the underestimation of LWCRF and the overestimation of SWCRF. Clouds in models seem to be lower in the amount of high clouds but more reflective than those in the observations in this regime.

In the weak vertical motion regime, the lower free troposphere is dry. In the large-scale environment condition, the reproducibility of LWCRF is high in models adopting the scheme where the relative humidity–based suppression for deep convection occurrence is implemented. Models adopting the Zhang and McFarlane scheme show good performance without such a suppression mechanism.

Corresponding author address: Hiroki Ichikawa, Dept. of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. E-mail: ichikawa@hyarc.nagoya-u.ac.jp
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., J. S. Kain, and M. P. Kay, 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forest sounding interpretation. Wea. Forecasting, 17, 10631079.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185.

  • Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys., 24, 379390.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: New convective adjustment scheme, Part 1. Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626641.

  • Bony, S., and K. A. Emmanuel, 2001: A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE data. J. Atmos. Sci., 58, 31583183.

    • Search Google Scholar
    • Export Citation
  • Bony, S., K.-M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate, 10, 20552077.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J.-L. Dufresne, H. L. Treut, J.-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 21082121.

  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X.-L. Zhou, and Y. Nikitenko, 2001: The influence of the 1998 El Niño upon cloud radiative forcing over the Pacific warm pool. J. Climate, 14, 21292137.

    • Search Google Scholar
    • Export Citation
  • Charlock, T., and V. Ramanathan, 1985: The albedo field and cloud radiative forcing in a general circulation model with internally generated cloud optics. J. Atmos. Sci., 42, 14081429.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and C. Jakob, 2004: Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island. Geophys. Res. Lett., 31, L10106, doi:10.1029/2004GL019539.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in 18 coupled climate models. J. Climate, 19, 46054630.

  • Del Genio, A. D., and M.-S. Yao, 1993: Efficient cumulus parameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 181–184.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M.-S. Yao, W. Kovari, and K. K. W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9, 270304.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., W. Kovari, M.-S. Yao, and J. Jonas, 2005: Cumulus microphysics and climate sensitivity. J. Climate, 18, 23762387.

  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • Diansky, N. A., and E. M. Volodin, 2002: Simulation of present-day climate with a coupled atmosphere–ocean general circulation model. Izv., Atmos. Oceanic Phys., 38, 732747.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132329.

  • Emori, S., T. Nozawa, A. Numaguti, and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79, 939947.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmospheric coupling over monsoon regions. Nature, 312, 141143.

  • Graham, N., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J. Y., V. Phillips, and R. Tailleux, 2004: Improved mixing representation in Emanuel’s convection scheme. Quart. J. Roy. Meteor. Soc., 130, 32073222.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and M. J. Miller, 1989: A numerical study of the parameterization of deep tropical convection. Quart. J. Roy. Meteor. Soc., 115, 12091241.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. Doelling, 1991: On the net radiative effectiveness of clouds. J. Geophys. Res., 96, 869891.

  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6, 20492062.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 44954511.

    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, M. Watanabe, and M. Kimoto, 2011: Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J. Climate, 24, 48594873.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., H. Masunaga, and H. Kanzawa, 2009: Evaluation of precipitation and high-level cloud areas associated with large-scale circulation over the tropical Pacific in the CMIP3 models. J. Meteor. Soc. Japan, 87, 771789.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative forcing of subtropical low level clouds in global models. Climate Dyn., 30, 779788.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7, 559565.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and V. Ramanathan, 1990: Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR Community Climate Model. J. Geophys. Res., 95, 11 67911 698.

    • Search Google Scholar
    • Export Citation
  • Klein, S., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis of the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20, 55105527.

  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., H.-T. Wu, and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Climate, 10, 381392.

    • Search Google Scholar
    • Export Citation
  • Le Trent, H., and Z.-X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5, 175187.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525.

  • Lindzen, R. S., M.-D. Chou, and A. Y. Hou, 2001: Does the earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82, 417432.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics parameterization developed for the ECHAM4 general circulation model. Climate Dyn., 12, 557572.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2006: Observations of tropical precipitating clouds ranging from shallow to deep convective systems. Geophys. Res. Lett., 33, L16805, doi:10.1029/2006GL026547.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., J. F. Scinocca, M. Lazare, R. Harvey, D. Verseghy, and J. Li, 2005: The CCCma third generation atmospheric general circulation model. CCCma Internal Rep., 25 pp.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Pan, D.-M., and D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, and D. L. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763.

    • Search Google Scholar
    • Export Citation
  • Rasch, P., and J. E. Kristjansson, 1998: A comparison of the CCM3 model climate using diagnostic and predicted condensate parameterizations. J. Climate, 11, 15871614.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ricard, J. L., and J. F. Royer, 1993: A statistical cloud scheme for use in an AGCM. Ann. Geophys. Atmos. Space Sci., 11, 10951115.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Smith, G. L., and Coauthors, 2004: Clouds and Earth Radiant Energy System: An overview. Adv. Space Res., 33, 11251131.

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Su, H., D. E. Waliser, J. H. Jiang, J.-L. Li, W. G. Read, J. W. Waters, and A. M. Tompkins, 2006: Relationship of upper tropospheric water vapor, clouds and SST: MLS observations, ECMWF analyses and GCM simulations. Geophys. Res. Lett., 33, L22802, doi:10.1029/2006GL027582.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061.

  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Weare, B. C., 2004: A comparison of AMIP II model cloud layer properties with ISCCP D2 estimates. Climate Dyn., 22, 281292.

  • Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF, and LMD atmospheric models. Climate Dyn., 17, 905922.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and G. Tselioudis, 2007: GCM intercomparison of global cloud regime: Present-day evaluation and climate change response. Climate Dyn., 29, 231250.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., M. A. Ringer, and C. A. Senior, 2003: Evaluating the cloud response to climate change and current climate variability. Climate Dyn., 20, 705721.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Kiehl, I. M. Held, M. Z. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of tropical cloud properties and responses in GCMs using midtropospheric vertical velocity. Climate Dyn., 27, 261279.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and M. Zhang, 2000: Impact of the convective triggering function on single-column model simulations. J. Geophys. Res., 105, 14 98314 996.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., D. L. Hartmann, and R. Wood, 2008: Dynamic effects on the tropical cloud radiative forcing and radiation budget. J. Climate, 21, 23372351.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2006: Present-day climate and climate sensitivity in the Meteorological Research Institute Coupled GCM, version 2.3 (MRI-CGCM2.3). J. Meteor. Soc. Japan, 84, 333363.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the CCC-GCM. Atmos.–Ocean, 3, 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., J. T. Kiehl, and P. J. Rasch, 1998: Response of climate simulation to a new convective parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3). J. Climate, 11, 20972115.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., W. Lin, C. B. Bretherton, J. J. Hack, and P. J. Rasch, 2003: A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). J. Geophys. Res., 108, 4035, doi:10.1029/2002JD002523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 338 171 85
PDF Downloads 133 51 5